Westonci.ca is the best place to get answers to your questions, provided by a community of experienced and knowledgeable experts. Discover precise answers to your questions from a wide range of experts on our user-friendly Q&A platform. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
To graph the equation [tex]\(3x + 2y = 18\)[/tex], we need to find the [tex]\(x\)[/tex]-intercept, the [tex]\(y\)[/tex]-intercept, and the slope of the line. Let’s go through each step in detail.
### Finding the [tex]\(x\)[/tex]-Intercept:
The [tex]\(x\)[/tex]-intercept occurs where the graph of the equation crosses the [tex]\(x\)[/tex]-axis. At this point, [tex]\(y = 0\)[/tex]. We substitute [tex]\(y = 0\)[/tex] into the equation to find [tex]\(x\)[/tex].
[tex]\[ 3x + 2(0) = 18 \][/tex]
[tex]\[ 3x = 18 \][/tex]
[tex]\[ x = \frac{18}{3} \][/tex]
[tex]\[ x = 6 \][/tex]
So, the [tex]\(x\)[/tex]-intercept is [tex]\((6, 0)\)[/tex].
### Finding the [tex]\(y\)[/tex]-Intercept:
The [tex]\(y\)[/tex]-intercept occurs where the graph of the equation crosses the [tex]\(y\)[/tex]-axis. At this point, [tex]\(x = 0\)[/tex]. We substitute [tex]\(x = 0\)[/tex] into the equation to find [tex]\(y\)[/tex].
[tex]\[ 3(0) + 2y = 18 \][/tex]
[tex]\[ 2y = 18 \][/tex]
[tex]\[ y = \frac{18}{2} \][/tex]
[tex]\[ y = 9 \][/tex]
So, the [tex]\(y\)[/tex]-intercept is [tex]\((0, 9)\)[/tex].
### Finding the Slope:
To find the slope, we need to rewrite the equation in slope-intercept form, which is [tex]\(y = mx + b\)[/tex], where [tex]\(m\)[/tex] represents the slope, and [tex]\(b\)[/tex] represents the [tex]\(y\)[/tex]-intercept.
Starting with the original equation:
[tex]\[ 3x + 2y = 18 \][/tex]
We solve for [tex]\(y\)[/tex]:
[tex]\[ 2y = -3x + 18 \][/tex]
[tex]\[ y = \frac{-3}{2}x + \frac{18}{2} \][/tex]
[tex]\[ y = -\frac{3}{2}x + 9 \][/tex]
From this, we can see that the slope [tex]\(m\)[/tex] is [tex]\(-\frac{3}{2}\)[/tex].
### Summary:
- The [tex]\(x\)[/tex]-intercept is [tex]\((6, 0)\)[/tex].
- The [tex]\(y\)[/tex]-intercept is [tex]\((0, 9)\)[/tex].
- The slope of the line is [tex]\(-\frac{3}{2}\)[/tex].
By using these points and the slope, you can graph the line representing the equation [tex]\(3x + 2y = 18\)[/tex].
### Finding the [tex]\(x\)[/tex]-Intercept:
The [tex]\(x\)[/tex]-intercept occurs where the graph of the equation crosses the [tex]\(x\)[/tex]-axis. At this point, [tex]\(y = 0\)[/tex]. We substitute [tex]\(y = 0\)[/tex] into the equation to find [tex]\(x\)[/tex].
[tex]\[ 3x + 2(0) = 18 \][/tex]
[tex]\[ 3x = 18 \][/tex]
[tex]\[ x = \frac{18}{3} \][/tex]
[tex]\[ x = 6 \][/tex]
So, the [tex]\(x\)[/tex]-intercept is [tex]\((6, 0)\)[/tex].
### Finding the [tex]\(y\)[/tex]-Intercept:
The [tex]\(y\)[/tex]-intercept occurs where the graph of the equation crosses the [tex]\(y\)[/tex]-axis. At this point, [tex]\(x = 0\)[/tex]. We substitute [tex]\(x = 0\)[/tex] into the equation to find [tex]\(y\)[/tex].
[tex]\[ 3(0) + 2y = 18 \][/tex]
[tex]\[ 2y = 18 \][/tex]
[tex]\[ y = \frac{18}{2} \][/tex]
[tex]\[ y = 9 \][/tex]
So, the [tex]\(y\)[/tex]-intercept is [tex]\((0, 9)\)[/tex].
### Finding the Slope:
To find the slope, we need to rewrite the equation in slope-intercept form, which is [tex]\(y = mx + b\)[/tex], where [tex]\(m\)[/tex] represents the slope, and [tex]\(b\)[/tex] represents the [tex]\(y\)[/tex]-intercept.
Starting with the original equation:
[tex]\[ 3x + 2y = 18 \][/tex]
We solve for [tex]\(y\)[/tex]:
[tex]\[ 2y = -3x + 18 \][/tex]
[tex]\[ y = \frac{-3}{2}x + \frac{18}{2} \][/tex]
[tex]\[ y = -\frac{3}{2}x + 9 \][/tex]
From this, we can see that the slope [tex]\(m\)[/tex] is [tex]\(-\frac{3}{2}\)[/tex].
### Summary:
- The [tex]\(x\)[/tex]-intercept is [tex]\((6, 0)\)[/tex].
- The [tex]\(y\)[/tex]-intercept is [tex]\((0, 9)\)[/tex].
- The slope of the line is [tex]\(-\frac{3}{2}\)[/tex].
By using these points and the slope, you can graph the line representing the equation [tex]\(3x + 2y = 18\)[/tex].
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.