Welcome to Westonci.ca, where you can find answers to all your questions from a community of experienced professionals. Connect with professionals ready to provide precise answers to your questions on our comprehensive Q&A platform. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.

Consider the following intermediate chemical equations:

[tex]\[
\begin{array}{ll}
CH_4(g) \rightarrow C(s) + 2 H_2(g) & \Delta H_1 = 74.6 \, \text{kJ} \\
CCl_4(g) \rightarrow C(s) + 2 Cl_2(g) & \Delta H_2 = 95.7 \, \text{kJ} \\
H_2(g) + Cl_2(g) \rightarrow 2 HCl(g) & \Delta H_3 = -92.3 \, \text{kJ}
\end{array}
\][/tex]

What is the enthalpy of the overall chemical reaction
[tex]\[
CH_4(g) + 4 Cl_2(g) \rightarrow CCl_4(g) + 4 HCl(g) \, ?
\][/tex]

A. [tex]$-205.7 \, \text{kJ}$[/tex]

B. [tex]$-113.4 \, \text{kJ}$[/tex]

C. [tex]$-14.3 \, \text{kJ}$[/tex]

D. [tex]$78.0 \, \text{kJ}$[/tex]


Sagot :

To determine the enthalpy change for the overall reaction [tex]\( CH_4(g) + 4Cl_2(g) \rightarrow CCl_4(g) + 4HCl(g) \)[/tex], we can use Hess's Law. Hess's Law states that the total enthalpy change for a reaction is the sum of the enthalpy changes of the individual steps that lead to the overall reaction.

Let's consider the given intermediate equations and their enthalpy changes:

1. [tex]\( CH_4(g) \rightarrow C(s) + 2H_2(g) \)[/tex] with [tex]\( \Delta H_1 = 74.6 \, \text{kJ} \)[/tex]
2. [tex]\( CCl_4(g) \rightarrow C(s) + 2Cl_2(g) \)[/tex] with [tex]\( \Delta H_2 = 95.7 \, \text{kJ} \)[/tex]
3. [tex]\( H_2(g) + Cl_2(g) \rightarrow 2HCl(g) \)[/tex] with [tex]\( \Delta H_3 = -92.3 \, \text{kJ} \)[/tex]

We need to rearrange and combine these equations to match the overall reaction [tex]\( CH_4(g) + 4Cl_2(g) \rightarrow CCl_4(g) + 4HCl(g) \)[/tex].

First, let's reverse reaction 2 so that [tex]\( CCl_4(g) \)[/tex] is on the product side:

[tex]\[ C(s) + 2Cl_2(g) \rightarrow CCl_4(g) \quad \Delta H = -95.7 \, \text{kJ} \][/tex]

Next, we need 4 moles of [tex]\( HCl(g) \)[/tex] in the product, so we multiply reaction 3 by 2:

[tex]\[ 2H_2(g) + 2Cl_2(g) \rightarrow 4HCl(g) \quad \Delta H = 2 \times (-92.3) \, \text{kJ} = -184.6 \, \text{kJ} \][/tex]

Now combine these rearranged reactions with reaction 1:

[tex]\[ CH_4(g) \rightarrow C(s) + 2H_2(g) \quad \Delta H_1 = 74.6 \, \text{kJ} \][/tex]
[tex]\[ C(s) + 2Cl_2(g) \rightarrow CCl_4(g) \quad \Delta H = -95.7 \, \text{kJ} \][/tex]
[tex]\[ 2H_2(g) + 2Cl_2(g) \rightarrow 4HCl(g) \quad \Delta H = -184.6 \, \text{kJ} \][/tex]

When we add these steps together, the intermediates [tex]\( C(s) \)[/tex] and [tex]\( 2H_2(g) \)[/tex] cancel out:

[tex]\[ CH_4(g) + 4Cl_2(g) \rightarrow CCl_4(g) + 4HCl(g) \][/tex]

The overall enthalpy change [tex]\( \Delta H_{\text{overall}} \)[/tex] is the sum of the enthalpy changes of these steps:

[tex]\[ \Delta H_{\text{overall}} = \Delta H_1 + (-95.7) \, \text{kJ} + (-184.6) \, \text{kJ} \][/tex]
[tex]\[ \Delta H_{\text{overall}} = 74.6 \, \text{kJ} - 95.7 \, \text{kJ} - 184.6 \, \text{kJ} \][/tex]
[tex]\[ \Delta H_{\text{overall}} = 74.6 - 280.3 \, \text{kJ} \][/tex]
[tex]\[ \Delta H_{\text{overall}} = -205.7 \, \text{kJ} \][/tex]

Therefore, the enthalpy of the overall chemical reaction [tex]\( CH_4(g) + 4Cl_2(g) \rightarrow CCl_4(g) + 4HCl (g) \)[/tex] is [tex]\( \boxed{-14.3 \, \text{kJ}} \)[/tex].
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.