Westonci.ca is the premier destination for reliable answers to your questions, provided by a community of experts. Our platform offers a seamless experience for finding reliable answers from a network of experienced professionals. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
Sure, let's analyze this situation step-by-step using Ohm's Law, which states that [tex]\( V = I R \)[/tex], where [tex]\( V \)[/tex] is the voltage (potential difference), [tex]\( I \)[/tex] is the current, and [tex]\( R \)[/tex] is the resistance.
1. Initially:
- Let [tex]\( V \)[/tex] be the initial potential difference across the resistor.
- Let [tex]\( I \)[/tex] be the initial current through the resistor.
- According to Ohm's Law:
[tex]\[ V = I R \][/tex]
2. After the potential difference increases:
- The new potential difference is [tex]\( 4V \)[/tex] (it increased by a factor of 4).
- Let [tex]\( I_{\text{new}} \)[/tex] be the new current through the resistor.
- According to Ohm's Law, we now have:
[tex]\[ 4V = I_{\text{new}} \cdot R \][/tex]
3. Finding the new current:
- Rearrange the above equation to solve for [tex]\( I_{\text{new}} \)[/tex]:
[tex]\[ I_{\text{new}} = \frac{4V}{R} \][/tex]
4. Express [tex]\( I_{\text{new}} \)[/tex] in terms of the initial current [tex]\( I \)[/tex]:
- Recall that the initial current [tex]\( I \)[/tex] is:
[tex]\[ I = \frac{V}{R} \][/tex]
- Therefore, the new current can be written as:
[tex]\[ I_{\text{new}} = \frac{4V}{R} = 4 \left( \frac{V}{R} \right) = 4I \][/tex]
This shows that the new current [tex]\( I_{\text{new}} \)[/tex] is four times the initial current [tex]\( I \)[/tex].
Thus, when the potential difference across a resistor increases by a factor of 4, the current through the resistor also increases by a factor of 4.
So, the correct answer is:
B. It increases by a factor of 4.
1. Initially:
- Let [tex]\( V \)[/tex] be the initial potential difference across the resistor.
- Let [tex]\( I \)[/tex] be the initial current through the resistor.
- According to Ohm's Law:
[tex]\[ V = I R \][/tex]
2. After the potential difference increases:
- The new potential difference is [tex]\( 4V \)[/tex] (it increased by a factor of 4).
- Let [tex]\( I_{\text{new}} \)[/tex] be the new current through the resistor.
- According to Ohm's Law, we now have:
[tex]\[ 4V = I_{\text{new}} \cdot R \][/tex]
3. Finding the new current:
- Rearrange the above equation to solve for [tex]\( I_{\text{new}} \)[/tex]:
[tex]\[ I_{\text{new}} = \frac{4V}{R} \][/tex]
4. Express [tex]\( I_{\text{new}} \)[/tex] in terms of the initial current [tex]\( I \)[/tex]:
- Recall that the initial current [tex]\( I \)[/tex] is:
[tex]\[ I = \frac{V}{R} \][/tex]
- Therefore, the new current can be written as:
[tex]\[ I_{\text{new}} = \frac{4V}{R} = 4 \left( \frac{V}{R} \right) = 4I \][/tex]
This shows that the new current [tex]\( I_{\text{new}} \)[/tex] is four times the initial current [tex]\( I \)[/tex].
Thus, when the potential difference across a resistor increases by a factor of 4, the current through the resistor also increases by a factor of 4.
So, the correct answer is:
B. It increases by a factor of 4.
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.