Welcome to Westonci.ca, where curiosity meets expertise. Ask any question and receive fast, accurate answers from our knowledgeable community. Connect with a community of experts ready to provide precise solutions to your questions on our user-friendly Q&A platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
To determine how the current changes when the potential difference across a resistor increases by a factor of 4, we can analyze the situation using Ohm's law, which states [tex]\( V = I \cdot R \)[/tex].
Let's start by setting up the initial conditions and the subsequent change:
1. Initial setup:
- Let the initial voltage be [tex]\( V_{\text{initial}} \)[/tex].
- Let the initial current be [tex]\( I_{\text{initial}} \)[/tex].
- The resistance [tex]\( R \)[/tex] is calculated using Ohm's Law: [tex]\( R = \frac{V_{\text{initial}}}{I_{\text{initial}}} \)[/tex].
2. Change in voltage:
- The problem states that the potential difference (voltage) increases by a factor of 4.
- Therefore, the new voltage [tex]\( V_{\text{new}} \)[/tex] can be expressed as: [tex]\( V_{\text{new}} = 4 \cdot V_{\text{initial}} \)[/tex].
3. Determining the new current:
- Using Ohm's law again with the new voltage, we can solve for the new current [tex]\( I_{\text{new}} \)[/tex].
- Substituting [tex]\( V_{\text{new}} \)[/tex] and the resistance [tex]\( R \)[/tex], we get:
[tex]\[ V_{\text{new}} = I_{\text{new}} \cdot R \][/tex]
- Plugging in [tex]\( V_{\text{new}} = 4 \cdot V_{\text{initial}} \)[/tex] and [tex]\( R = \frac{V_{\text{initial}}}{I_{\text{initial}}} \)[/tex]:
[tex]\[ 4 \cdot V_{\text{initial}} = I_{\text{new}} \cdot \frac{V_{\text{initial}}}{I_{\text{initial}}} \][/tex]
- Simplifying the equation:
[tex]\[ 4 \cdot V_{\text{initial}} = I_{\text{new}} \cdot \frac{V_{\text{initial}}}{I_{\text{initial}}} \][/tex]
[tex]\[ I_{\text{new}} = 4 \cdot I_{\text{initial}} \][/tex]
4. Conclusion:
- The new current is [tex]\( 4 \)[/tex] times the initial current.
Therefore, the current increases by a factor of 4 when the potential difference increases by a factor of 4. This corresponds to option B.
Final Answer: B. It increases by a factor of 4.
Let's start by setting up the initial conditions and the subsequent change:
1. Initial setup:
- Let the initial voltage be [tex]\( V_{\text{initial}} \)[/tex].
- Let the initial current be [tex]\( I_{\text{initial}} \)[/tex].
- The resistance [tex]\( R \)[/tex] is calculated using Ohm's Law: [tex]\( R = \frac{V_{\text{initial}}}{I_{\text{initial}}} \)[/tex].
2. Change in voltage:
- The problem states that the potential difference (voltage) increases by a factor of 4.
- Therefore, the new voltage [tex]\( V_{\text{new}} \)[/tex] can be expressed as: [tex]\( V_{\text{new}} = 4 \cdot V_{\text{initial}} \)[/tex].
3. Determining the new current:
- Using Ohm's law again with the new voltage, we can solve for the new current [tex]\( I_{\text{new}} \)[/tex].
- Substituting [tex]\( V_{\text{new}} \)[/tex] and the resistance [tex]\( R \)[/tex], we get:
[tex]\[ V_{\text{new}} = I_{\text{new}} \cdot R \][/tex]
- Plugging in [tex]\( V_{\text{new}} = 4 \cdot V_{\text{initial}} \)[/tex] and [tex]\( R = \frac{V_{\text{initial}}}{I_{\text{initial}}} \)[/tex]:
[tex]\[ 4 \cdot V_{\text{initial}} = I_{\text{new}} \cdot \frac{V_{\text{initial}}}{I_{\text{initial}}} \][/tex]
- Simplifying the equation:
[tex]\[ 4 \cdot V_{\text{initial}} = I_{\text{new}} \cdot \frac{V_{\text{initial}}}{I_{\text{initial}}} \][/tex]
[tex]\[ I_{\text{new}} = 4 \cdot I_{\text{initial}} \][/tex]
4. Conclusion:
- The new current is [tex]\( 4 \)[/tex] times the initial current.
Therefore, the current increases by a factor of 4 when the potential difference increases by a factor of 4. This corresponds to option B.
Final Answer: B. It increases by a factor of 4.
We hope this was helpful. Please come back whenever you need more information or answers to your queries. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.