Explore Westonci.ca, the leading Q&A site where experts provide accurate and helpful answers to all your questions. Connect with a community of experts ready to help you find solutions to your questions quickly and accurately. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
Let's complete the statements and the reasons for each.
1. Points [tex]\( A, B, \)[/tex] and [tex]\( C \)[/tex] form a triangle. (given)
2. Let [tex]\(\overline{DE}\)[/tex] be a line passing through [tex]\(B\)[/tex] and parallel to [tex]\(\overline{AC}\)[/tex]. (definition of parallel lines)
3. [tex]\(\angle 3 \cong \angle 5\)[/tex] and [tex]\(\angle 1 \cong \angle 4\)[/tex]. The reason is alternate interior angles and corresponding angles.
4. [tex]\(m \angle 1 = m \angle 4\)[/tex] and [tex]\(m \angle 3 = m \angle 5\)[/tex]. The reason is measures of corresponding and alternate interior angles.
5. [tex]\(m \angle 4 + m \angle 2 + m \angle 5 = 180^\circ\)[/tex]. The reason is angle addition and definition of a straight line.
6. [tex]\(m \angle 1 + m \angle 2 + m \angle 3 = 180^\circ\)[/tex]. The reason is substitution.
So here is the completed table:
[tex]\[ \begin{tabular}{|l|l|} \hline Statement & Reason \\ \hline Points $A, B$, and $C$ form a triangle. & given \\ \hline Let $\overline{DE}$ be a line passing through $B$ and parallel to $\overline{AC}$ & definition of parallel lines \\ \hline $\angle 3 \cong \angle 5$ and $\angle 1 \cong \angle 4$ & alternate interior angles and corresponding angles \\ \hline $m \angle 1= m \angle 4$ and $m \angle 3= m \angle 5$ & measures of corresponding and alternate interior angles \\ \hline $m \angle 4+ m \angle 2+ m \angle 5=180^{\circ}$ & angle addition and definition of a straight line \\ \hline $m \angle 1+ m \angle 2+ m \angle 3=180^{\circ}$ & substitution \\ \hline \end{tabular} \][/tex]
1. Points [tex]\( A, B, \)[/tex] and [tex]\( C \)[/tex] form a triangle. (given)
2. Let [tex]\(\overline{DE}\)[/tex] be a line passing through [tex]\(B\)[/tex] and parallel to [tex]\(\overline{AC}\)[/tex]. (definition of parallel lines)
3. [tex]\(\angle 3 \cong \angle 5\)[/tex] and [tex]\(\angle 1 \cong \angle 4\)[/tex]. The reason is alternate interior angles and corresponding angles.
4. [tex]\(m \angle 1 = m \angle 4\)[/tex] and [tex]\(m \angle 3 = m \angle 5\)[/tex]. The reason is measures of corresponding and alternate interior angles.
5. [tex]\(m \angle 4 + m \angle 2 + m \angle 5 = 180^\circ\)[/tex]. The reason is angle addition and definition of a straight line.
6. [tex]\(m \angle 1 + m \angle 2 + m \angle 3 = 180^\circ\)[/tex]. The reason is substitution.
So here is the completed table:
[tex]\[ \begin{tabular}{|l|l|} \hline Statement & Reason \\ \hline Points $A, B$, and $C$ form a triangle. & given \\ \hline Let $\overline{DE}$ be a line passing through $B$ and parallel to $\overline{AC}$ & definition of parallel lines \\ \hline $\angle 3 \cong \angle 5$ and $\angle 1 \cong \angle 4$ & alternate interior angles and corresponding angles \\ \hline $m \angle 1= m \angle 4$ and $m \angle 3= m \angle 5$ & measures of corresponding and alternate interior angles \\ \hline $m \angle 4+ m \angle 2+ m \angle 5=180^{\circ}$ & angle addition and definition of a straight line \\ \hline $m \angle 1+ m \angle 2+ m \angle 3=180^{\circ}$ & substitution \\ \hline \end{tabular} \][/tex]
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.