Welcome to Westonci.ca, where finding answers to your questions is made simple by our community of experts. Explore our Q&A platform to find reliable answers from a wide range of experts in different fields. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
To find the equation of a line that is perpendicular to the given line [tex]\(2x + y = -5\)[/tex] and passes through the point [tex]\((-1, -2)\)[/tex], follow these steps:
1. Determine the slope of the given line [tex]\(2x + y = -5\)[/tex]:
- Rewrite the equation in slope-intercept form [tex]\(y = mx + b\)[/tex], where [tex]\(m\)[/tex] is the slope.
- [tex]\(2x + y = -5\)[/tex] can be rewritten as [tex]\(y = -2x - 5\)[/tex].
- Therefore, the slope [tex]\(m\)[/tex] of the given line is [tex]\(-2\)[/tex].
2. Find the slope of the line perpendicular to the given line:
- The slope of a line perpendicular to another is the negative reciprocal of the slope of the original line.
- The negative reciprocal of [tex]\(-2\)[/tex] is [tex]\(\frac{1}{2}\)[/tex].
3. Form the equation of the line in slope-intercept form [tex]\(y = mx + b\)[/tex]:
- Use the point-slope form of the line equation:
[tex]\[ y - y_1 = m(x - x_1) \][/tex]
- Substitute the slope ([tex]\(\frac{1}{2}\)[/tex]) and the given point [tex]\((-1, -2)\)[/tex]:
[tex]\[ y - (-2) = \frac{1}{2}(x - (-1)) \][/tex]
[tex]\[ y + 2 = \frac{1}{2}(x + 1) \][/tex]
4. Solve for the [tex]\(y\)[/tex]-intercept [tex]\(b\)[/tex]:
- Distribute and solve for [tex]\(y\)[/tex]:
[tex]\[ y + 2 = \frac{1}{2}x + \frac{1}{2} \][/tex]
[tex]\[ y = \frac{1}{2}x + \frac{1}{2} - 2 \][/tex]
[tex]\[ y = \frac{1}{2}x - \frac{3}{2} \][/tex]
Therefore, the equation of the line perpendicular to [tex]\(2x + y = -5\)[/tex] that passes through the point [tex]\((-1, -2)\)[/tex] is [tex]\(y = \frac{1}{2}x - \frac{3}{2}\)[/tex].
Among the given options, the correct equation is:
[tex]\[ \boxed{y = \frac{1}{2}x - \frac{3}{2}} \][/tex]
1. Determine the slope of the given line [tex]\(2x + y = -5\)[/tex]:
- Rewrite the equation in slope-intercept form [tex]\(y = mx + b\)[/tex], where [tex]\(m\)[/tex] is the slope.
- [tex]\(2x + y = -5\)[/tex] can be rewritten as [tex]\(y = -2x - 5\)[/tex].
- Therefore, the slope [tex]\(m\)[/tex] of the given line is [tex]\(-2\)[/tex].
2. Find the slope of the line perpendicular to the given line:
- The slope of a line perpendicular to another is the negative reciprocal of the slope of the original line.
- The negative reciprocal of [tex]\(-2\)[/tex] is [tex]\(\frac{1}{2}\)[/tex].
3. Form the equation of the line in slope-intercept form [tex]\(y = mx + b\)[/tex]:
- Use the point-slope form of the line equation:
[tex]\[ y - y_1 = m(x - x_1) \][/tex]
- Substitute the slope ([tex]\(\frac{1}{2}\)[/tex]) and the given point [tex]\((-1, -2)\)[/tex]:
[tex]\[ y - (-2) = \frac{1}{2}(x - (-1)) \][/tex]
[tex]\[ y + 2 = \frac{1}{2}(x + 1) \][/tex]
4. Solve for the [tex]\(y\)[/tex]-intercept [tex]\(b\)[/tex]:
- Distribute and solve for [tex]\(y\)[/tex]:
[tex]\[ y + 2 = \frac{1}{2}x + \frac{1}{2} \][/tex]
[tex]\[ y = \frac{1}{2}x + \frac{1}{2} - 2 \][/tex]
[tex]\[ y = \frac{1}{2}x - \frac{3}{2} \][/tex]
Therefore, the equation of the line perpendicular to [tex]\(2x + y = -5\)[/tex] that passes through the point [tex]\((-1, -2)\)[/tex] is [tex]\(y = \frac{1}{2}x - \frac{3}{2}\)[/tex].
Among the given options, the correct equation is:
[tex]\[ \boxed{y = \frac{1}{2}x - \frac{3}{2}} \][/tex]
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.