Westonci.ca offers fast, accurate answers to your questions. Join our community and get the insights you need now. Explore thousands of questions and answers from knowledgeable experts in various fields on our Q&A platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To find the fourth vertex of a parallelogram when three vertices are given, we can use the properties of a parallelogram. Specifically, opposite vertices of a parallelogram add up to twice the coordinates of the midpoint. Given the vertices [tex]\(A = (2,1)\)[/tex], [tex]\(B = (4,7)\)[/tex], and [tex]\(C = (6,5)\)[/tex], we need to find [tex]\(D\)[/tex].
Let's denote the fourth vertex by [tex]\(D(x, y)\)[/tex]. There are three possible scenarios for finding the coordinates of [tex]\(D\)[/tex]:
### Case 1: [tex]\(A\)[/tex] and [tex]\(B\)[/tex] as one pair of opposite vertices, [tex]\(C\)[/tex] and [tex]\(D\)[/tex] as the other
We can find the fourth vertex [tex]\(D\)[/tex] using the following method:
- The coordinate of [tex]\(D\)[/tex] can be obtained by translating [tex]\(C\)[/tex] by the same vector that translates [tex]\(A\)[/tex] to [tex]\(B\)[/tex].
The translation vector from [tex]\(A\)[/tex] to [tex]\(B\)[/tex] is:
[tex]\[ (B_x - A_x, B_y - A_y) = (4 - 2, 7 - 1) = (2, 6) \][/tex]
Now we apply this translation to [tex]\(C\)[/tex]:
[tex]\[ D = (C_x + (B_x - A_x), C_y + (B_y - A_y)) = (6 + 2, 5 + 6) = (8, 11) \][/tex]
### Case 2: [tex]\(A\)[/tex] and [tex]\(C\)[/tex] as one pair of opposite vertices, [tex]\(B\)[/tex] and [tex]\(D\)[/tex] as the other
- The coordinate of [tex]\(D\)[/tex] can be obtained by translating [tex]\(B\)[/tex] by the same vector that translates [tex]\(A\)[/tex] to [tex]\(C\)[/tex].
The translation vector from [tex]\(A\)[/tex] to [tex]\(C\)[/tex] is:
[tex]\[ (C_x - A_x, C_y - A_y) = (6 - 2, 5 - 1) = (4, 4) \][/tex]
Now we apply this translation to [tex]\(B\)[/tex]:
[tex]\[ D = (B_x + (C_x - A_x), B_y + (C_y - A_y)) = (4 + 4, 7 + 4) = (8, 11) \][/tex]
### Case 3: [tex]\(B\)[/tex] and [tex]\(C\)[/tex] as one pair of opposite vertices, [tex]\(A\)[/tex] and [tex]\(D\)[/tex] as the other
- The coordinate of [tex]\(D\)[/tex] can be obtained by translating [tex]\(A\)[/tex] by the same vector that translates [tex]\(B\)[/tex] to [tex]\(C\)[/tex].
The translation vector from [tex]\(B\)[/tex] to [tex]\(C\)[/tex] is:
[tex]\[ (C_x - B_x, C_y - B_y) = (6 - 4, 5 - 7) = (2, -2) \][/tex]
Now we apply this translation to [tex]\(A\)[/tex]:
[tex]\[ D = (A_x + (C_x - B_x), A_y + (C_y - B_y)) = (2 + 2, 1 + (-2)) = (4, -1) \][/tex]
### Summary:
The three possible coordinates for the fourth vertex [tex]\(D\)[/tex] are:
- [tex]\( (8, 11) \)[/tex]
- [tex]\( (8, 11) \)[/tex]
- [tex]\( (4, -1) \)[/tex]
Thus, the three possible coordinates from the given options are:
[tex]\[ \boxed{(8, 11), (8, 11), (4, -1)} \][/tex]
Let's denote the fourth vertex by [tex]\(D(x, y)\)[/tex]. There are three possible scenarios for finding the coordinates of [tex]\(D\)[/tex]:
### Case 1: [tex]\(A\)[/tex] and [tex]\(B\)[/tex] as one pair of opposite vertices, [tex]\(C\)[/tex] and [tex]\(D\)[/tex] as the other
We can find the fourth vertex [tex]\(D\)[/tex] using the following method:
- The coordinate of [tex]\(D\)[/tex] can be obtained by translating [tex]\(C\)[/tex] by the same vector that translates [tex]\(A\)[/tex] to [tex]\(B\)[/tex].
The translation vector from [tex]\(A\)[/tex] to [tex]\(B\)[/tex] is:
[tex]\[ (B_x - A_x, B_y - A_y) = (4 - 2, 7 - 1) = (2, 6) \][/tex]
Now we apply this translation to [tex]\(C\)[/tex]:
[tex]\[ D = (C_x + (B_x - A_x), C_y + (B_y - A_y)) = (6 + 2, 5 + 6) = (8, 11) \][/tex]
### Case 2: [tex]\(A\)[/tex] and [tex]\(C\)[/tex] as one pair of opposite vertices, [tex]\(B\)[/tex] and [tex]\(D\)[/tex] as the other
- The coordinate of [tex]\(D\)[/tex] can be obtained by translating [tex]\(B\)[/tex] by the same vector that translates [tex]\(A\)[/tex] to [tex]\(C\)[/tex].
The translation vector from [tex]\(A\)[/tex] to [tex]\(C\)[/tex] is:
[tex]\[ (C_x - A_x, C_y - A_y) = (6 - 2, 5 - 1) = (4, 4) \][/tex]
Now we apply this translation to [tex]\(B\)[/tex]:
[tex]\[ D = (B_x + (C_x - A_x), B_y + (C_y - A_y)) = (4 + 4, 7 + 4) = (8, 11) \][/tex]
### Case 3: [tex]\(B\)[/tex] and [tex]\(C\)[/tex] as one pair of opposite vertices, [tex]\(A\)[/tex] and [tex]\(D\)[/tex] as the other
- The coordinate of [tex]\(D\)[/tex] can be obtained by translating [tex]\(A\)[/tex] by the same vector that translates [tex]\(B\)[/tex] to [tex]\(C\)[/tex].
The translation vector from [tex]\(B\)[/tex] to [tex]\(C\)[/tex] is:
[tex]\[ (C_x - B_x, C_y - B_y) = (6 - 4, 5 - 7) = (2, -2) \][/tex]
Now we apply this translation to [tex]\(A\)[/tex]:
[tex]\[ D = (A_x + (C_x - B_x), A_y + (C_y - B_y)) = (2 + 2, 1 + (-2)) = (4, -1) \][/tex]
### Summary:
The three possible coordinates for the fourth vertex [tex]\(D\)[/tex] are:
- [tex]\( (8, 11) \)[/tex]
- [tex]\( (8, 11) \)[/tex]
- [tex]\( (4, -1) \)[/tex]
Thus, the three possible coordinates from the given options are:
[tex]\[ \boxed{(8, 11), (8, 11), (4, -1)} \][/tex]
We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.