Discover a world of knowledge at Westonci.ca, where experts and enthusiasts come together to answer your questions. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
To solve the inequality [tex]\(2x^2 + 7x + 2 \geq 0\)[/tex], we need to follow these steps:
1. Identify the quadratic function and find its discriminant:
The given quadratic inequality is [tex]\(2x^2 + 7x + 2 \geq 0\)[/tex].
The standard form of a quadratic equation is [tex]\(ax^2 + bx + c\)[/tex], where [tex]\(a = 2\)[/tex], [tex]\(b = 7\)[/tex], and [tex]\(c = 2\)[/tex].
2. Calculate the discriminant:
The discriminant [tex]\(\Delta\)[/tex] of the quadratic equation [tex]\(ax^2 + bx + c = 0\)[/tex] is given by [tex]\(\Delta = b^2 - 4ac\)[/tex].
So, [tex]\(\Delta = 7^2 - 4 \cdot 2 \cdot 2 = 49 - 16 = 33\)[/tex].
3. Find the roots of the quadratic equation:
The roots of the quadratic equation are given by:
[tex]\[ x_{1,2} = \frac{-b \pm \sqrt{\Delta}}{2a} \][/tex]
Substituting the values, we get:
[tex]\[ x_1 = \frac{-7 - \sqrt{33}}{4} \][/tex]
[tex]\[ x_2 = \frac{-7 + \sqrt{33}}{4} \][/tex]
4. Determine the intervals where the inequality holds:
Since the coefficient of [tex]\(x^2\)[/tex] (which is 2) is positive, the parabola opens upwards. Therefore, the quadratic expression [tex]\(2x^2 + 7x + 2\)[/tex] will be greater than or equal to zero outside the interval [tex]\([x_1, x_2]\)[/tex].
5. Write down the solution to the inequality:
Based on the interval analysis, the quadratic inequality [tex]\(2x^2 + 7x + 2 \geq 0\)[/tex] is satisfied for [tex]\(x \leq \frac{-7 - \sqrt{33}}{4}\)[/tex] or [tex]\(x \geq \frac{-7 + \sqrt{33}}{4}\)[/tex].
Among the given choices, this corresponds to option C:
[tex]\[ \boxed{x \leq \frac{-7 - \sqrt{33}}{4} \text{ or } x \geq \frac{-7 + \sqrt{33}}{4}} \][/tex]
1. Identify the quadratic function and find its discriminant:
The given quadratic inequality is [tex]\(2x^2 + 7x + 2 \geq 0\)[/tex].
The standard form of a quadratic equation is [tex]\(ax^2 + bx + c\)[/tex], where [tex]\(a = 2\)[/tex], [tex]\(b = 7\)[/tex], and [tex]\(c = 2\)[/tex].
2. Calculate the discriminant:
The discriminant [tex]\(\Delta\)[/tex] of the quadratic equation [tex]\(ax^2 + bx + c = 0\)[/tex] is given by [tex]\(\Delta = b^2 - 4ac\)[/tex].
So, [tex]\(\Delta = 7^2 - 4 \cdot 2 \cdot 2 = 49 - 16 = 33\)[/tex].
3. Find the roots of the quadratic equation:
The roots of the quadratic equation are given by:
[tex]\[ x_{1,2} = \frac{-b \pm \sqrt{\Delta}}{2a} \][/tex]
Substituting the values, we get:
[tex]\[ x_1 = \frac{-7 - \sqrt{33}}{4} \][/tex]
[tex]\[ x_2 = \frac{-7 + \sqrt{33}}{4} \][/tex]
4. Determine the intervals where the inequality holds:
Since the coefficient of [tex]\(x^2\)[/tex] (which is 2) is positive, the parabola opens upwards. Therefore, the quadratic expression [tex]\(2x^2 + 7x + 2\)[/tex] will be greater than or equal to zero outside the interval [tex]\([x_1, x_2]\)[/tex].
5. Write down the solution to the inequality:
Based on the interval analysis, the quadratic inequality [tex]\(2x^2 + 7x + 2 \geq 0\)[/tex] is satisfied for [tex]\(x \leq \frac{-7 - \sqrt{33}}{4}\)[/tex] or [tex]\(x \geq \frac{-7 + \sqrt{33}}{4}\)[/tex].
Among the given choices, this corresponds to option C:
[tex]\[ \boxed{x \leq \frac{-7 - \sqrt{33}}{4} \text{ or } x \geq \frac{-7 + \sqrt{33}}{4}} \][/tex]
Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.