Westonci.ca is your trusted source for finding answers to a wide range of questions, backed by a knowledgeable community. Our platform provides a seamless experience for finding precise answers from a network of experienced professionals. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
Let's solve the equation [tex]\( x^2 = 20 \)[/tex] step-by-step to find the correct solutions.
1. Start with the given equation:
[tex]\[ x^2 = 20 \][/tex]
2. Take the square root of both sides to solve for [tex]\( x \)[/tex]:
[tex]\[ x = \pm \sqrt{20} \][/tex]
3. Simplify [tex]\( \sqrt{20} \)[/tex]:
- Break down 20 into its prime factors: [tex]\( 20 = 4 \times 5 \)[/tex].
- Therefore, [tex]\( \sqrt{20} = \sqrt{4 \times 5} \)[/tex].
- The square root of a product can be taken as the product of the square roots: [tex]\( \sqrt{4 \times 5} = \sqrt{4} \times \sqrt{5} \)[/tex].
- We know that [tex]\( \sqrt{4} = 2 \)[/tex], so:
[tex]\[ \sqrt{20} = 2 \times \sqrt{5} \][/tex]
4. Include the [tex]\( \pm \)[/tex] to account for both positive and negative solutions:
[tex]\[ x = \pm 2 \sqrt{5} \][/tex]
So, the solutions to the equation [tex]\( x^2 = 20 \)[/tex] are [tex]\( x = 2 \sqrt{5} \)[/tex] and [tex]\( x = -2 \sqrt{5} \)[/tex].
Given the choices:
- A. [tex]\( x = \pm 5 \sqrt{2} \)[/tex]
- B. [tex]\( x = \pm 10 \sqrt{2} \)[/tex]
- C. [tex]\( x = \pm 2 \sqrt{10} \)[/tex]
- D. [tex]\( x = \pm 2 \sqrt{5} \)[/tex]
The correct answer is:
[tex]\[ \boxed{x = \pm 2 \sqrt{5}} \][/tex]
1. Start with the given equation:
[tex]\[ x^2 = 20 \][/tex]
2. Take the square root of both sides to solve for [tex]\( x \)[/tex]:
[tex]\[ x = \pm \sqrt{20} \][/tex]
3. Simplify [tex]\( \sqrt{20} \)[/tex]:
- Break down 20 into its prime factors: [tex]\( 20 = 4 \times 5 \)[/tex].
- Therefore, [tex]\( \sqrt{20} = \sqrt{4 \times 5} \)[/tex].
- The square root of a product can be taken as the product of the square roots: [tex]\( \sqrt{4 \times 5} = \sqrt{4} \times \sqrt{5} \)[/tex].
- We know that [tex]\( \sqrt{4} = 2 \)[/tex], so:
[tex]\[ \sqrt{20} = 2 \times \sqrt{5} \][/tex]
4. Include the [tex]\( \pm \)[/tex] to account for both positive and negative solutions:
[tex]\[ x = \pm 2 \sqrt{5} \][/tex]
So, the solutions to the equation [tex]\( x^2 = 20 \)[/tex] are [tex]\( x = 2 \sqrt{5} \)[/tex] and [tex]\( x = -2 \sqrt{5} \)[/tex].
Given the choices:
- A. [tex]\( x = \pm 5 \sqrt{2} \)[/tex]
- B. [tex]\( x = \pm 10 \sqrt{2} \)[/tex]
- C. [tex]\( x = \pm 2 \sqrt{10} \)[/tex]
- D. [tex]\( x = \pm 2 \sqrt{5} \)[/tex]
The correct answer is:
[tex]\[ \boxed{x = \pm 2 \sqrt{5}} \][/tex]
We hope this was helpful. Please come back whenever you need more information or answers to your queries. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.