At Westonci.ca, we make it easy for you to get the answers you need from a community of knowledgeable individuals. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
To find the heat of formation of [tex]\( SO_2(g) \)[/tex], let's analyze and combine the given reactions systematically.
The given reactions are:
1. [tex]\( S(s) + \frac{3}{2} O_2(g) \rightarrow SO_3(g) + 2x \)[/tex] kJ
2. [tex]\( SO_2(g) + \frac{1}{2} O_2(g) \rightarrow SO_3(g) + y \)[/tex] kJ
To proceed, we will use the principle of Hess's Law, which states that the total enthalpy change of a reaction is the sum of the enthalpy changes of the steps into which the reaction can be divided.
Let's denote the heat of formation of [tex]\( SO_2(g) \)[/tex] as [tex]\( \Delta H_f^{SO_2} \)[/tex].
First, let's rewrite the given reactions to isolate [tex]\( SO_2(g) \)[/tex]:
- Reaction 1: [tex]\( S(s) + \frac{3}{2} O_2(g) \rightarrow SO_3(g) + 2x \)[/tex] kJ (let's consider this equation as it is)
- Reaction 2: [tex]\( SO_2(g) + \frac{1}{2} O_2(g) \rightarrow SO_3(g) + y \)[/tex] kJ (let's reverse this equation to find the heat change for forming [tex]\( SO_2(g) \)[/tex] from [tex]\( SO_3(g) \)[/tex])
Reversing Reaction 2, we get:
[tex]\[SO_3(g) \rightarrow SO_2(g) + \frac{1}{2} O_2(g) - y \text{ kJ} \][/tex]
Adding the reversed Reaction 2 to Reaction 1, we get:
[tex]\[ S(s) + \frac{3}{2} O_2(g) + SO_3(g) \rightarrow SO_3(g) + 2x \text{ kJ} \][/tex]
[tex]\[SO_3(g) \rightarrow SO_2(g) + \frac{1}{2} O_2(g) - y \text{ kJ} \][/tex]
Combining the two reactions, the [tex]\( SO_3(g) \)[/tex] cancels out:
[tex]\[ S(s) + \frac{3}{2} O_2(g) \rightarrow S(s) + \frac{1}{2} O_2(g) + SO_2(g) + 2x - y \text{ kJ} \][/tex]
This simplifies to:
[tex]\[ S(s) + O_2(g) \rightarrow SO_2(g) + (2x - y) \text{ kJ} \][/tex]
Thus, the heat of formation of [tex]\( SO_2(g) \)[/tex] is:
[tex]\[ \Delta H_f^{SO_2} = -2x + y \][/tex]
Therefore, the correct answer is:
A. [tex]\((y - 2x)\)[/tex]
The given reactions are:
1. [tex]\( S(s) + \frac{3}{2} O_2(g) \rightarrow SO_3(g) + 2x \)[/tex] kJ
2. [tex]\( SO_2(g) + \frac{1}{2} O_2(g) \rightarrow SO_3(g) + y \)[/tex] kJ
To proceed, we will use the principle of Hess's Law, which states that the total enthalpy change of a reaction is the sum of the enthalpy changes of the steps into which the reaction can be divided.
Let's denote the heat of formation of [tex]\( SO_2(g) \)[/tex] as [tex]\( \Delta H_f^{SO_2} \)[/tex].
First, let's rewrite the given reactions to isolate [tex]\( SO_2(g) \)[/tex]:
- Reaction 1: [tex]\( S(s) + \frac{3}{2} O_2(g) \rightarrow SO_3(g) + 2x \)[/tex] kJ (let's consider this equation as it is)
- Reaction 2: [tex]\( SO_2(g) + \frac{1}{2} O_2(g) \rightarrow SO_3(g) + y \)[/tex] kJ (let's reverse this equation to find the heat change for forming [tex]\( SO_2(g) \)[/tex] from [tex]\( SO_3(g) \)[/tex])
Reversing Reaction 2, we get:
[tex]\[SO_3(g) \rightarrow SO_2(g) + \frac{1}{2} O_2(g) - y \text{ kJ} \][/tex]
Adding the reversed Reaction 2 to Reaction 1, we get:
[tex]\[ S(s) + \frac{3}{2} O_2(g) + SO_3(g) \rightarrow SO_3(g) + 2x \text{ kJ} \][/tex]
[tex]\[SO_3(g) \rightarrow SO_2(g) + \frac{1}{2} O_2(g) - y \text{ kJ} \][/tex]
Combining the two reactions, the [tex]\( SO_3(g) \)[/tex] cancels out:
[tex]\[ S(s) + \frac{3}{2} O_2(g) \rightarrow S(s) + \frac{1}{2} O_2(g) + SO_2(g) + 2x - y \text{ kJ} \][/tex]
This simplifies to:
[tex]\[ S(s) + O_2(g) \rightarrow SO_2(g) + (2x - y) \text{ kJ} \][/tex]
Thus, the heat of formation of [tex]\( SO_2(g) \)[/tex] is:
[tex]\[ \Delta H_f^{SO_2} = -2x + y \][/tex]
Therefore, the correct answer is:
A. [tex]\((y - 2x)\)[/tex]
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.