Westonci.ca is the Q&A platform that connects you with experts who provide accurate and detailed answers. Join our Q&A platform to connect with experts dedicated to providing precise answers to your questions in different areas. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
Sure, let's solve this step by step.
1. Calculating the Third Angle:
- In any triangle, the sum of the angles is [tex]\( 180^{\circ} \)[/tex].
- In a right triangle, one of these angles is always [tex]\( 90^{\circ} \)[/tex].
- Given one angle is [tex]\( 35^{\circ} \)[/tex], let's denote this angle as [tex]\( \angle A \)[/tex].
- Let's denote the right angle as [tex]\( \angle B = 90^{\circ} \)[/tex].
To find the third angle ([tex]\(\angle C\)[/tex]):
[tex]\[ \angle C = 180^{\circ} - 90^{\circ} - 35^{\circ} = 55^{\circ} \][/tex]
2. Calculate the Length of the Hypotenuse:
- Let's denote the adjacent side to the [tex]\( 35^{\circ} \)[/tex] angle (usually given) as [tex]\( \text{adjacent} = 7 \)[/tex] units.
- We use the cosine function, which relates the adjacent side and the hypotenuse in a right triangle:
[tex]\[ \cos(35^{\circ}) = \frac{\text{adjacent}}{\text{hypotenuse}} \][/tex]
Solving for the hypotenuse:
[tex]\[ \text{hypotenuse} = \frac{\text{adjacent}}{\cos(35^{\circ})} \][/tex]
The hypotenuse is approximately:
[tex]\[ \text{hypotenuse} \approx 8.5454 \text{ units} \][/tex]
3. Calculate the Length of the Missing Side [tex]\( x \)[/tex] (Opposite side):
- We use the tangent function, which relates the opposite side and the adjacent side in a right triangle:
[tex]\[ \tan(35^{\circ}) = \frac{\text{opposite}}{\text{adjacent}} \][/tex]
Solving for the opposite side:
[tex]\[ \text{opposite} = \text{adjacent} \times \tan(35^{\circ}) \][/tex]
The opposite side [tex]\( x \)[/tex] is approximately:
[tex]\[ x \approx 4.9015 \text{ units} \][/tex]
In summary:
1. The third angle is [tex]\( 55^{\circ} \)[/tex].
2. The length of the hypotenuse is approximately [tex]\( 8.5454 \)[/tex] units.
3. The length of the missing side [tex]\( x \)[/tex] (opposite the [tex]\( 35^{\circ} \)[/tex] angle) is approximately [tex]\( 4.9015 \)[/tex] units.
1. Calculating the Third Angle:
- In any triangle, the sum of the angles is [tex]\( 180^{\circ} \)[/tex].
- In a right triangle, one of these angles is always [tex]\( 90^{\circ} \)[/tex].
- Given one angle is [tex]\( 35^{\circ} \)[/tex], let's denote this angle as [tex]\( \angle A \)[/tex].
- Let's denote the right angle as [tex]\( \angle B = 90^{\circ} \)[/tex].
To find the third angle ([tex]\(\angle C\)[/tex]):
[tex]\[ \angle C = 180^{\circ} - 90^{\circ} - 35^{\circ} = 55^{\circ} \][/tex]
2. Calculate the Length of the Hypotenuse:
- Let's denote the adjacent side to the [tex]\( 35^{\circ} \)[/tex] angle (usually given) as [tex]\( \text{adjacent} = 7 \)[/tex] units.
- We use the cosine function, which relates the adjacent side and the hypotenuse in a right triangle:
[tex]\[ \cos(35^{\circ}) = \frac{\text{adjacent}}{\text{hypotenuse}} \][/tex]
Solving for the hypotenuse:
[tex]\[ \text{hypotenuse} = \frac{\text{adjacent}}{\cos(35^{\circ})} \][/tex]
The hypotenuse is approximately:
[tex]\[ \text{hypotenuse} \approx 8.5454 \text{ units} \][/tex]
3. Calculate the Length of the Missing Side [tex]\( x \)[/tex] (Opposite side):
- We use the tangent function, which relates the opposite side and the adjacent side in a right triangle:
[tex]\[ \tan(35^{\circ}) = \frac{\text{opposite}}{\text{adjacent}} \][/tex]
Solving for the opposite side:
[tex]\[ \text{opposite} = \text{adjacent} \times \tan(35^{\circ}) \][/tex]
The opposite side [tex]\( x \)[/tex] is approximately:
[tex]\[ x \approx 4.9015 \text{ units} \][/tex]
In summary:
1. The third angle is [tex]\( 55^{\circ} \)[/tex].
2. The length of the hypotenuse is approximately [tex]\( 8.5454 \)[/tex] units.
3. The length of the missing side [tex]\( x \)[/tex] (opposite the [tex]\( 35^{\circ} \)[/tex] angle) is approximately [tex]\( 4.9015 \)[/tex] units.
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.