Find the best solutions to your questions at Westonci.ca, the premier Q&A platform with a community of knowledgeable experts. Get detailed and precise answers to your questions from a dedicated community of experts on our Q&A platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
To solve the exponential equation [tex]\( e^x = 15.29 \)[/tex] and find its equivalent logarithmic form, follow these steps:
1. Recognize that [tex]\( e^x \)[/tex] is an exponential function, where the base is [tex]\( e \)[/tex], the natural logarithm base. The inverse operation of exponentiation with base [tex]\( e \)[/tex] is taking the natural logarithm (ln).
2. Apply the natural logarithm to both sides of the equation to isolate the variable [tex]\( x \)[/tex]. This uses the property of logarithms that states [tex]\( \ln(e^x) = x \)[/tex] because the natural logarithm and the exponential function are inverses.
[tex]\[ \begin{align*} \ln(e^x) &= \ln(15.29) \end{align*} \][/tex]
3. Use the logarithmic identity [tex]\( \ln(e^x) = x \cdot \ln(e) \)[/tex]. Because [tex]\( \ln(e) = 1 \)[/tex], this simplifies to:
[tex]\[ \begin{align*} x \cdot \ln(e) &= \ln(15.29) \\ x \cdot 1 &= \ln(15.29) \\ x &= \ln(15.29) \end{align*} \][/tex]
Thus, the equivalent logarithmic equation for [tex]\( e^x = 15.29 \)[/tex] is:
[tex]\[ \boxed{\ln(15.29) = x} \][/tex]
Therefore, the correct option is C. [tex]\(\ln 15.29 = x\)[/tex].
1. Recognize that [tex]\( e^x \)[/tex] is an exponential function, where the base is [tex]\( e \)[/tex], the natural logarithm base. The inverse operation of exponentiation with base [tex]\( e \)[/tex] is taking the natural logarithm (ln).
2. Apply the natural logarithm to both sides of the equation to isolate the variable [tex]\( x \)[/tex]. This uses the property of logarithms that states [tex]\( \ln(e^x) = x \)[/tex] because the natural logarithm and the exponential function are inverses.
[tex]\[ \begin{align*} \ln(e^x) &= \ln(15.29) \end{align*} \][/tex]
3. Use the logarithmic identity [tex]\( \ln(e^x) = x \cdot \ln(e) \)[/tex]. Because [tex]\( \ln(e) = 1 \)[/tex], this simplifies to:
[tex]\[ \begin{align*} x \cdot \ln(e) &= \ln(15.29) \\ x \cdot 1 &= \ln(15.29) \\ x &= \ln(15.29) \end{align*} \][/tex]
Thus, the equivalent logarithmic equation for [tex]\( e^x = 15.29 \)[/tex] is:
[tex]\[ \boxed{\ln(15.29) = x} \][/tex]
Therefore, the correct option is C. [tex]\(\ln 15.29 = x\)[/tex].
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.