Welcome to Westonci.ca, where you can find answers to all your questions from a community of experienced professionals. Explore our Q&A platform to find reliable answers from a wide range of experts in different fields. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
To find the possible rational zeros of the polynomial [tex]\( f(x) = -3x^4 - 9x^3 - 6x^2 - 8x + 14 \)[/tex], we can use the Rational Root Theorem. This theorem states that any possible rational root, in its lowest terms [tex]\( \frac{p}{q} \)[/tex], will have [tex]\( p \)[/tex] as a factor of the constant term (the term without [tex]\( x \)[/tex]) and [tex]\( q \)[/tex] as a factor of the leading coefficient (the coefficient of the term with the highest power of [tex]\( x \)[/tex]).
1. Identify the factors of the constant term (14):
The factors are: [tex]\( \pm 1, \pm 2, \pm 7, \pm 14 \)[/tex]
2. Identify the factors of the leading coefficient (-3):
The factors are: [tex]\( \pm 1, \pm 3 \)[/tex]
3. Form all possible rational numbers [tex]\( \frac{p}{q} \)[/tex] using these factors:
The possible rational numbers are obtained by dividing each factor of the constant term by each factor of the leading coefficient. This gives us:
- [tex]\( \frac{1}{1}, \frac{2}{1}, \frac{7}{1}, \frac{14}{1} \)[/tex]
- [tex]\( \frac{1}{3}, \frac{2}{3}, \frac{7}{3}, \frac{14}{3} \)[/tex]
- And their negatives [tex]\( -1, -2, -7, -14, -\frac{1}{3}, -\frac{2}{3}, -\frac{7}{3}, -\frac{14}{3} \)[/tex]
4. Combine and sort these possible zeros:
Arranging all these possibilities, we get:
[tex]\[ \pm 1, \pm 2, \pm 7, \pm 14, \pm \frac{1}{3}, \pm \frac{2}{3}, \pm \frac{7}{3}, \pm \frac{14}{3} \][/tex]
Thus, the list of all possible rational zeros of [tex]\( f(x) = -3x^4 - 9x^3 - 6x^2 - 8x + 14 \)[/tex] is:
[tex]\[ \pm 1, \pm 2, \pm 7, \pm 14, \pm \frac{1}{3}, \pm \frac{2}{3}, \pm \frac{7}{3}, \pm \frac{14}{3} \][/tex]
So, the correct answer is:
[tex]\[ \pm 1, \pm 2, \pm 7, \pm 14, \pm \frac{1}{3}, \pm \frac{2}{3}, \pm \frac{7}{3}, \pm \frac{14}{3} \][/tex]
This matches the third provided option in the question.
1. Identify the factors of the constant term (14):
The factors are: [tex]\( \pm 1, \pm 2, \pm 7, \pm 14 \)[/tex]
2. Identify the factors of the leading coefficient (-3):
The factors are: [tex]\( \pm 1, \pm 3 \)[/tex]
3. Form all possible rational numbers [tex]\( \frac{p}{q} \)[/tex] using these factors:
The possible rational numbers are obtained by dividing each factor of the constant term by each factor of the leading coefficient. This gives us:
- [tex]\( \frac{1}{1}, \frac{2}{1}, \frac{7}{1}, \frac{14}{1} \)[/tex]
- [tex]\( \frac{1}{3}, \frac{2}{3}, \frac{7}{3}, \frac{14}{3} \)[/tex]
- And their negatives [tex]\( -1, -2, -7, -14, -\frac{1}{3}, -\frac{2}{3}, -\frac{7}{3}, -\frac{14}{3} \)[/tex]
4. Combine and sort these possible zeros:
Arranging all these possibilities, we get:
[tex]\[ \pm 1, \pm 2, \pm 7, \pm 14, \pm \frac{1}{3}, \pm \frac{2}{3}, \pm \frac{7}{3}, \pm \frac{14}{3} \][/tex]
Thus, the list of all possible rational zeros of [tex]\( f(x) = -3x^4 - 9x^3 - 6x^2 - 8x + 14 \)[/tex] is:
[tex]\[ \pm 1, \pm 2, \pm 7, \pm 14, \pm \frac{1}{3}, \pm \frac{2}{3}, \pm \frac{7}{3}, \pm \frac{14}{3} \][/tex]
So, the correct answer is:
[tex]\[ \pm 1, \pm 2, \pm 7, \pm 14, \pm \frac{1}{3}, \pm \frac{2}{3}, \pm \frac{7}{3}, \pm \frac{14}{3} \][/tex]
This matches the third provided option in the question.
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.