Discover answers to your most pressing questions at Westonci.ca, the ultimate Q&A platform that connects you with expert solutions. Explore in-depth answers to your questions from a knowledgeable community of experts across different fields. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
To determine how much energy is released when 59.7 grams of methane (CH[tex]\(_4\)[/tex]) reacts with oxygen, follow these steps:
1. Identify the molar mass of methane (CH[tex]\(_4\)[/tex]):
The molar mass of methane is:
[tex]\( \text{C: } 12.01 \text{ g/mol} \)[/tex]
[tex]\( \text{H: } 1.01 \times 4 = 4.04 \text{ g/mol} \)[/tex]
Therefore, the total molar mass of CH[tex]\(_4\)[/tex] is [tex]\( 12.01 + 4.04 = 16.05 \text{ g/mol} \)[/tex].
2. Convert the given mass of methane to moles:
Given that the mass of methane is 59.7 grams, we can find the number of moles by dividing the mass by the molar mass:
[tex]\[ \text{Moles of CH\(_4\)} = \frac{59.7 \text{ grams}}{16.05 \text{ g/mol}} = 3.722 \text{ moles} \][/tex]
3. Calculate the energy released:
According to the enthalpy change ([tex]\( \Delta H \)[/tex]) provided in the combustion reaction, there is an energy release of -890 kJ per mole of methane.
Thus, the total energy released is:
[tex]\[ \text{Energy released} = \text{Moles of CH\(_4\)} \times \Delta H = 3.722 \text{ moles} \times (-890 \text{ kJ/mol}) \][/tex]
This calculation yields:
[tex]\[ \text{Energy released} = -3312.531 \text{ kJ} \][/tex]
Rounding to three significant figures, the energy released is -3310 kJ.
Therefore, the combustion of 59.7 grams of methane releases -3310 kilojoules of energy.
1. Identify the molar mass of methane (CH[tex]\(_4\)[/tex]):
The molar mass of methane is:
[tex]\( \text{C: } 12.01 \text{ g/mol} \)[/tex]
[tex]\( \text{H: } 1.01 \times 4 = 4.04 \text{ g/mol} \)[/tex]
Therefore, the total molar mass of CH[tex]\(_4\)[/tex] is [tex]\( 12.01 + 4.04 = 16.05 \text{ g/mol} \)[/tex].
2. Convert the given mass of methane to moles:
Given that the mass of methane is 59.7 grams, we can find the number of moles by dividing the mass by the molar mass:
[tex]\[ \text{Moles of CH\(_4\)} = \frac{59.7 \text{ grams}}{16.05 \text{ g/mol}} = 3.722 \text{ moles} \][/tex]
3. Calculate the energy released:
According to the enthalpy change ([tex]\( \Delta H \)[/tex]) provided in the combustion reaction, there is an energy release of -890 kJ per mole of methane.
Thus, the total energy released is:
[tex]\[ \text{Energy released} = \text{Moles of CH\(_4\)} \times \Delta H = 3.722 \text{ moles} \times (-890 \text{ kJ/mol}) \][/tex]
This calculation yields:
[tex]\[ \text{Energy released} = -3312.531 \text{ kJ} \][/tex]
Rounding to three significant figures, the energy released is -3310 kJ.
Therefore, the combustion of 59.7 grams of methane releases -3310 kilojoules of energy.
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.