Westonci.ca is the premier destination for reliable answers to your questions, brought to you by a community of experts. Join our platform to connect with experts ready to provide accurate answers to your questions in various fields. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
Certainly! Let's solve the given equations step-by-step to find [tex]\(\frac{a}{b}\)[/tex].
Given:
1. [tex]\(\frac{a+c}{b} = \frac{3}{2}\)[/tex]
2. [tex]\(\frac{b}{c} = \frac{3}{4}\)[/tex]
First, let's deal with the second equation to express [tex]\(c\)[/tex] in terms of [tex]\(b\)[/tex]:
[tex]\[ \frac{b}{c} = \frac{3}{4} \][/tex]
This implies:
[tex]\[ b = \frac{3}{4}c \][/tex]
To solve for [tex]\(c\)[/tex]:
[tex]\[ c = \frac{4}{3}b \][/tex]
Now, substitute [tex]\(c = \frac{4}{3}b\)[/tex] into the first equation:
[tex]\[ \frac{a + c}{b} = \frac{3}{2} \][/tex]
[tex]\[ \frac{a + \frac{4}{3}b}{b} = \frac{3}{2} \][/tex]
We can split this fraction:
[tex]\[ \frac{a}{b} + \frac{\frac{4}{3}b}{b} = \frac{3}{2} \][/tex]
[tex]\[ \frac{a}{b} + \frac{4}{3} = \frac{3}{2} \][/tex]
Subtract [tex]\(\frac{4}{3}\)[/tex] from both sides:
[tex]\[ \frac{a}{b} = \frac{3}{2} - \frac{4}{3} \][/tex]
To subtract these fractions, we need a common denominator. The common denominator of 2 and 3 is 6:
[tex]\[ \frac{3}{2} = \frac{9}{6} \][/tex]
[tex]\[ \frac{4}{3} = \frac{8}{6} \][/tex]
Now, subtract the fractions:
[tex]\[ \frac{a}{b} = \frac{9}{6} - \frac{8}{6} = \frac{1}{6} \][/tex]
Thus, the ratio [tex]\(\frac{a}{b}\)[/tex] is:
[tex]\[ \frac{a}{b} = \boxed{\frac{1}{6}} \][/tex]
Given:
1. [tex]\(\frac{a+c}{b} = \frac{3}{2}\)[/tex]
2. [tex]\(\frac{b}{c} = \frac{3}{4}\)[/tex]
First, let's deal with the second equation to express [tex]\(c\)[/tex] in terms of [tex]\(b\)[/tex]:
[tex]\[ \frac{b}{c} = \frac{3}{4} \][/tex]
This implies:
[tex]\[ b = \frac{3}{4}c \][/tex]
To solve for [tex]\(c\)[/tex]:
[tex]\[ c = \frac{4}{3}b \][/tex]
Now, substitute [tex]\(c = \frac{4}{3}b\)[/tex] into the first equation:
[tex]\[ \frac{a + c}{b} = \frac{3}{2} \][/tex]
[tex]\[ \frac{a + \frac{4}{3}b}{b} = \frac{3}{2} \][/tex]
We can split this fraction:
[tex]\[ \frac{a}{b} + \frac{\frac{4}{3}b}{b} = \frac{3}{2} \][/tex]
[tex]\[ \frac{a}{b} + \frac{4}{3} = \frac{3}{2} \][/tex]
Subtract [tex]\(\frac{4}{3}\)[/tex] from both sides:
[tex]\[ \frac{a}{b} = \frac{3}{2} - \frac{4}{3} \][/tex]
To subtract these fractions, we need a common denominator. The common denominator of 2 and 3 is 6:
[tex]\[ \frac{3}{2} = \frac{9}{6} \][/tex]
[tex]\[ \frac{4}{3} = \frac{8}{6} \][/tex]
Now, subtract the fractions:
[tex]\[ \frac{a}{b} = \frac{9}{6} - \frac{8}{6} = \frac{1}{6} \][/tex]
Thus, the ratio [tex]\(\frac{a}{b}\)[/tex] is:
[tex]\[ \frac{a}{b} = \boxed{\frac{1}{6}} \][/tex]
We appreciate your time. Please come back anytime for the latest information and answers to your questions. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.