Welcome to Westonci.ca, where you can find answers to all your questions from a community of experienced professionals. Ask your questions and receive precise answers from experienced professionals across different disciplines. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
Let's solve this step-by-step:
1. Determine the molar mass of ammonia (NH₃):
The molar mass of ammonia is calculated by adding the atomic masses of its constituent atoms:
- Nitrogen (N) has an atomic mass of 14 g/mol.
- Hydrogen (H) has an atomic mass of 1 g/mol, and there are 3 hydrogen atoms in ammonia.
Therefore, the molar mass of NH₃ is:
[tex]\[ 14 + (3 \times 1) = 14 + 3 = 17 \text{ g/mol} \][/tex]
2. Calculate the number of moles of ammonia in 17 grams:
The number of moles ([tex]\(n\)[/tex]) is given by the formula:
[tex]\[ n = \frac{\text{mass}}{\text{molar mass}} \][/tex]
Given the mass of ammonia is 17 grams and the molar mass is 17 g/mol, the number of moles is:
[tex]\[ n = \frac{17 \text{ g}}{17 \text{ g/mol}} = 1 \text{ mole} \][/tex]
3. Determine the number of molecules in 1 mole of ammonia using Avogadro's number:
Avogadro's number ([tex]\(N_A\)[/tex]) is [tex]\(6.023 \times 10^{23}\)[/tex], which is the number of molecules in one mole of a substance.
Since we have 1 mole of ammonia:
[tex]\[ \text{Number of molecules} = 1 \text{ mole} \times 6.023 \times 10^{23} \text{ molecules/mole} = 6.023 \times 10^{23} \text{ molecules} \][/tex]
4. Compare the calculated result with the options:
- Option a: [tex]\(6.023 \times 10^{23}\)[/tex] molecules
- Option b: [tex]\(602.3 \times 10^{23}\)[/tex] molecules
- Option c: [tex]\(\frac{1}{2} \times 6.023 \times 10^{23}\)[/tex] molecules
- Option d: All of the above
From the calculation, we see that 17 grams of ammonia contains [tex]\(6.023 \times 10^{23}\)[/tex] molecules. This matches option a. Options b and c do not match the computed value, and option d cannot be correct because not all the provided options are true.
Thus, the correct answer is:
a. [tex]\(6.023 \times 10^{23}\)[/tex] molecules
1. Determine the molar mass of ammonia (NH₃):
The molar mass of ammonia is calculated by adding the atomic masses of its constituent atoms:
- Nitrogen (N) has an atomic mass of 14 g/mol.
- Hydrogen (H) has an atomic mass of 1 g/mol, and there are 3 hydrogen atoms in ammonia.
Therefore, the molar mass of NH₃ is:
[tex]\[ 14 + (3 \times 1) = 14 + 3 = 17 \text{ g/mol} \][/tex]
2. Calculate the number of moles of ammonia in 17 grams:
The number of moles ([tex]\(n\)[/tex]) is given by the formula:
[tex]\[ n = \frac{\text{mass}}{\text{molar mass}} \][/tex]
Given the mass of ammonia is 17 grams and the molar mass is 17 g/mol, the number of moles is:
[tex]\[ n = \frac{17 \text{ g}}{17 \text{ g/mol}} = 1 \text{ mole} \][/tex]
3. Determine the number of molecules in 1 mole of ammonia using Avogadro's number:
Avogadro's number ([tex]\(N_A\)[/tex]) is [tex]\(6.023 \times 10^{23}\)[/tex], which is the number of molecules in one mole of a substance.
Since we have 1 mole of ammonia:
[tex]\[ \text{Number of molecules} = 1 \text{ mole} \times 6.023 \times 10^{23} \text{ molecules/mole} = 6.023 \times 10^{23} \text{ molecules} \][/tex]
4. Compare the calculated result with the options:
- Option a: [tex]\(6.023 \times 10^{23}\)[/tex] molecules
- Option b: [tex]\(602.3 \times 10^{23}\)[/tex] molecules
- Option c: [tex]\(\frac{1}{2} \times 6.023 \times 10^{23}\)[/tex] molecules
- Option d: All of the above
From the calculation, we see that 17 grams of ammonia contains [tex]\(6.023 \times 10^{23}\)[/tex] molecules. This matches option a. Options b and c do not match the computed value, and option d cannot be correct because not all the provided options are true.
Thus, the correct answer is:
a. [tex]\(6.023 \times 10^{23}\)[/tex] molecules
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.