Discover the answers to your questions at Westonci.ca, where experts share their knowledge and insights with you. Our platform provides a seamless experience for finding precise answers from a network of experienced professionals. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
To determine how many years it will take for the farmland's market value to reach [tex]$125,000$[/tex] dollars, we start with the given exponential growth function:
[tex]\[ p(t) = 78,125 \cdot e^{0.025t} \][/tex]
We need to find [tex]\( t \)[/tex] when the market value [tex]\( p(t) \)[/tex] is [tex]$125,000. First, set the function equal to the target value: \[ 125,000 = 78,125 \cdot e^{0.025t} \] To isolate the exponential term, divide both sides by 78,125: \[ \frac{125,000}{78,125} = e^{0.025t} \] Simplify the left-hand side: \[ \frac{125,000}{78,125} = 1.6 \] So, we have: \[ 1.6 = e^{0.025t} \] Next, take the natural logarithm of both sides to solve for \( t \): \[ \ln(1.6) = \ln(e^{0.025t}) \] Since \( \ln(e^x) = x \), this simplifies to: \[ \ln(1.6) = 0.025t \] Finally, solve for \( t \) by dividing both sides by 0.025: \[ t = \frac{\ln(1.6)}{0.025} \] Using the calculated result: \[ t \approx 18.8 \] Therefore, the number of years it will take for the farmland's market value to reach $[/tex]125,000 is approximately:
[tex]\[ t \approx 18.8 \, \text{years} \][/tex]
[tex]\[ p(t) = 78,125 \cdot e^{0.025t} \][/tex]
We need to find [tex]\( t \)[/tex] when the market value [tex]\( p(t) \)[/tex] is [tex]$125,000. First, set the function equal to the target value: \[ 125,000 = 78,125 \cdot e^{0.025t} \] To isolate the exponential term, divide both sides by 78,125: \[ \frac{125,000}{78,125} = e^{0.025t} \] Simplify the left-hand side: \[ \frac{125,000}{78,125} = 1.6 \] So, we have: \[ 1.6 = e^{0.025t} \] Next, take the natural logarithm of both sides to solve for \( t \): \[ \ln(1.6) = \ln(e^{0.025t}) \] Since \( \ln(e^x) = x \), this simplifies to: \[ \ln(1.6) = 0.025t \] Finally, solve for \( t \) by dividing both sides by 0.025: \[ t = \frac{\ln(1.6)}{0.025} \] Using the calculated result: \[ t \approx 18.8 \] Therefore, the number of years it will take for the farmland's market value to reach $[/tex]125,000 is approximately:
[tex]\[ t \approx 18.8 \, \text{years} \][/tex]
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.