At Westonci.ca, we connect you with the answers you need, thanks to our active and informed community. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
Let's solve the system of linear equations step by step to determine the number of solutions:
Given equations:
[tex]\[ \begin{array}{l} y = 2x - 5 \\ -8x - 4y = -20 \end{array} \][/tex]
1. Substitute [tex]\( y \)[/tex] from the first equation into the second equation:
Since [tex]\( y = 2x - 5 \)[/tex], we can substitute this expression for [tex]\( y \)[/tex] in the second equation:
[tex]\[ -8x - 4(2x - 5) = -20 \][/tex]
2. Simplify the equation:
Distribute the [tex]\(-4\)[/tex] into the parenthesis:
[tex]\[ -8x - 8x + 20 = -20 \][/tex]
Combine like terms:
[tex]\[ -16x + 20 = -20 \][/tex]
3. Solve for [tex]\( x \)[/tex]:
Isolate [tex]\( x \)[/tex] by subtracting 20 from both sides:
[tex]\[ -16x = -40 \][/tex]
Divide both sides by [tex]\(-16\)[/tex]:
[tex]\[ x = 2.5 \][/tex]
4. Solve for [tex]\( y \)[/tex] using the first equation:
Substitute [tex]\( x = 2.5 \)[/tex] back into [tex]\( y = 2x - 5 \)[/tex]:
[tex]\[ y = 2(2.5) - 5 \][/tex]
Calculate the value of [tex]\( y \)[/tex]:
[tex]\[ y = 5 - 5 \][/tex]
[tex]\[ y = 0 \][/tex]
So the solution to the system is:
[tex]\[ (x, y) = (2.5, 0) \][/tex]
5. Determine the number of solutions:
Since we found a unique solution, the system has exactly one solution.
Therefore, the number of solutions is:
[tex]\[ \boxed{\text{one solution: } (2.5, 0)} \][/tex]
Given equations:
[tex]\[ \begin{array}{l} y = 2x - 5 \\ -8x - 4y = -20 \end{array} \][/tex]
1. Substitute [tex]\( y \)[/tex] from the first equation into the second equation:
Since [tex]\( y = 2x - 5 \)[/tex], we can substitute this expression for [tex]\( y \)[/tex] in the second equation:
[tex]\[ -8x - 4(2x - 5) = -20 \][/tex]
2. Simplify the equation:
Distribute the [tex]\(-4\)[/tex] into the parenthesis:
[tex]\[ -8x - 8x + 20 = -20 \][/tex]
Combine like terms:
[tex]\[ -16x + 20 = -20 \][/tex]
3. Solve for [tex]\( x \)[/tex]:
Isolate [tex]\( x \)[/tex] by subtracting 20 from both sides:
[tex]\[ -16x = -40 \][/tex]
Divide both sides by [tex]\(-16\)[/tex]:
[tex]\[ x = 2.5 \][/tex]
4. Solve for [tex]\( y \)[/tex] using the first equation:
Substitute [tex]\( x = 2.5 \)[/tex] back into [tex]\( y = 2x - 5 \)[/tex]:
[tex]\[ y = 2(2.5) - 5 \][/tex]
Calculate the value of [tex]\( y \)[/tex]:
[tex]\[ y = 5 - 5 \][/tex]
[tex]\[ y = 0 \][/tex]
So the solution to the system is:
[tex]\[ (x, y) = (2.5, 0) \][/tex]
5. Determine the number of solutions:
Since we found a unique solution, the system has exactly one solution.
Therefore, the number of solutions is:
[tex]\[ \boxed{\text{one solution: } (2.5, 0)} \][/tex]
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.