Discover the answers you need at Westonci.ca, a dynamic Q&A platform where knowledge is shared freely by a community of experts. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To simplify the given expression [tex]\(\frac{4 x}{3 a b^3}+\frac{2 y}{4 a^2 b^2}\)[/tex], we will follow these steps:
1. Simplify each term individually, if possible.
2. Find a common denominator for the fractions.
3. Combine the fractions into a single expression.
4. Simplify the resulting expression.
Let's start by simplifying each term.
The first term is [tex]\(\frac{4 x}{3 a b^3}\)[/tex].
The second term is [tex]\(\frac{2 y}{4 a^2 b^2}\)[/tex]. Notice that [tex]\(\frac{2 y}{4}\)[/tex] simplifies to [tex]\(\frac{y}{2}\)[/tex]. So, we can rewrite the second term as [tex]\(\frac{y}{2 a^2 b^2}\)[/tex].
Now the expression is:
[tex]\[ \frac{4 x}{3 a b^3} + \frac{y}{2 a^2 b^2} \][/tex]
Next, we need to find a common denominator for the two fractions. The denominators are [tex]\(3 a b^3\)[/tex] and [tex]\(2 a^2 b^2\)[/tex]. The least common multiple (LCM) of these denominators is:
[tex]\[ \text{LCM}(3 a b^3, 2 a^2 b^2) = 6 a^2 b^3 \][/tex]
Now we convert each fraction to have this common denominator.
For the first term [tex]\(\frac{4 x}{3 a b^3}\)[/tex], we need to multiply the numerator and the denominator by [tex]\(2 a\)[/tex]:
[tex]\[ \frac{4 x \cdot 2 a}{3 a b^3 \cdot 2 a} = \frac{8 a x}{6 a^2 b^3} \][/tex]
For the second term [tex]\(\frac{y}{2 a^2 b^2}\)[/tex], we need to multiply the numerator and the denominator by [tex]\(3 b\)[/tex]:
[tex]\[ \frac{y \cdot 3 b}{2 a^2 b^2 \cdot 3 b} = \frac{3 b y}{6 a^2 b^3} \][/tex]
Now the expression is:
[tex]\[ \frac{8 a x}{6 a^2 b^3} + \frac{3 b y}{6 a^2 b^3} \][/tex]
Since both fractions now have the same denominator, we can combine them:
[tex]\[ \frac{8 a x + 3 b y}{6 a^2 b^3} \][/tex]
This is the simplified form of the given expression. Therefore, the final answer is:
[tex]\[ \frac{8 a x + 3 b y}{6 a^2 b^3} \][/tex]
1. Simplify each term individually, if possible.
2. Find a common denominator for the fractions.
3. Combine the fractions into a single expression.
4. Simplify the resulting expression.
Let's start by simplifying each term.
The first term is [tex]\(\frac{4 x}{3 a b^3}\)[/tex].
The second term is [tex]\(\frac{2 y}{4 a^2 b^2}\)[/tex]. Notice that [tex]\(\frac{2 y}{4}\)[/tex] simplifies to [tex]\(\frac{y}{2}\)[/tex]. So, we can rewrite the second term as [tex]\(\frac{y}{2 a^2 b^2}\)[/tex].
Now the expression is:
[tex]\[ \frac{4 x}{3 a b^3} + \frac{y}{2 a^2 b^2} \][/tex]
Next, we need to find a common denominator for the two fractions. The denominators are [tex]\(3 a b^3\)[/tex] and [tex]\(2 a^2 b^2\)[/tex]. The least common multiple (LCM) of these denominators is:
[tex]\[ \text{LCM}(3 a b^3, 2 a^2 b^2) = 6 a^2 b^3 \][/tex]
Now we convert each fraction to have this common denominator.
For the first term [tex]\(\frac{4 x}{3 a b^3}\)[/tex], we need to multiply the numerator and the denominator by [tex]\(2 a\)[/tex]:
[tex]\[ \frac{4 x \cdot 2 a}{3 a b^3 \cdot 2 a} = \frac{8 a x}{6 a^2 b^3} \][/tex]
For the second term [tex]\(\frac{y}{2 a^2 b^2}\)[/tex], we need to multiply the numerator and the denominator by [tex]\(3 b\)[/tex]:
[tex]\[ \frac{y \cdot 3 b}{2 a^2 b^2 \cdot 3 b} = \frac{3 b y}{6 a^2 b^3} \][/tex]
Now the expression is:
[tex]\[ \frac{8 a x}{6 a^2 b^3} + \frac{3 b y}{6 a^2 b^3} \][/tex]
Since both fractions now have the same denominator, we can combine them:
[tex]\[ \frac{8 a x + 3 b y}{6 a^2 b^3} \][/tex]
This is the simplified form of the given expression. Therefore, the final answer is:
[tex]\[ \frac{8 a x + 3 b y}{6 a^2 b^3} \][/tex]
Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.