Discover the answers to your questions at Westonci.ca, where experts share their knowledge and insights with you. Join our platform to connect with experts ready to provide precise answers to your questions in different areas. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
To factor the given quadratic expression [tex]\( 9x^2 - 25 \)[/tex] completely, we will follow a step-by-step approach:
1. Recognize the form of the expression: Notice that the given expression, [tex]\( 9x^2 - 25 \)[/tex], is a difference of squares. The difference of squares can be factored using the identity:
[tex]\[ a^2 - b^2 = (a - b)(a + b) \][/tex]
2. Identify [tex]\(a\)[/tex] and [tex]\(b\)[/tex] in the expression [tex]\( 9x^2 - 25 \)[/tex]:
- In our case, [tex]\( 9x^2 \)[/tex] is a perfect square, and so is [tex]\( 25 \)[/tex].
- We can write [tex]\( 9x^2 \)[/tex] as [tex]\( (3x)^2 \)[/tex] and [tex]\( 25 \)[/tex] as [tex]\( 5^2 \)[/tex].
3. Apply the difference of squares identity:
Given:
[tex]\[ 9x^2 - 25 \][/tex]
Write it as:
[tex]\[ (3x)^2 - 5^2 \][/tex]
Now, apply the difference of squares formula:
[tex]\[ (3x)^2 - 5^2 = (3x - 5)(3x + 5) \][/tex]
4. Verify the factors given in the multiple-choice options:
- Option 1: [tex]\( (3x + 5)(3x - 5) \)[/tex]
- Option 2: [tex]\( (3x - 5)(3x - 5) \)[/tex]
- Option 3: [tex]\( (9x + 5)(x - 5) \)[/tex]
- Option 4: [tex]\( (9x - 5)(x + 5) \)[/tex]
Comparing these with our factorization [tex]\( (3x - 5)(3x + 5) \)[/tex], we see that the correct factorization corresponds to Option 1:
Thus, the completely factored form of [tex]\( 9x^2 - 25 \)[/tex] is:
[tex]\[ (3x - 5)(3x + 5) \][/tex]
1. Recognize the form of the expression: Notice that the given expression, [tex]\( 9x^2 - 25 \)[/tex], is a difference of squares. The difference of squares can be factored using the identity:
[tex]\[ a^2 - b^2 = (a - b)(a + b) \][/tex]
2. Identify [tex]\(a\)[/tex] and [tex]\(b\)[/tex] in the expression [tex]\( 9x^2 - 25 \)[/tex]:
- In our case, [tex]\( 9x^2 \)[/tex] is a perfect square, and so is [tex]\( 25 \)[/tex].
- We can write [tex]\( 9x^2 \)[/tex] as [tex]\( (3x)^2 \)[/tex] and [tex]\( 25 \)[/tex] as [tex]\( 5^2 \)[/tex].
3. Apply the difference of squares identity:
Given:
[tex]\[ 9x^2 - 25 \][/tex]
Write it as:
[tex]\[ (3x)^2 - 5^2 \][/tex]
Now, apply the difference of squares formula:
[tex]\[ (3x)^2 - 5^2 = (3x - 5)(3x + 5) \][/tex]
4. Verify the factors given in the multiple-choice options:
- Option 1: [tex]\( (3x + 5)(3x - 5) \)[/tex]
- Option 2: [tex]\( (3x - 5)(3x - 5) \)[/tex]
- Option 3: [tex]\( (9x + 5)(x - 5) \)[/tex]
- Option 4: [tex]\( (9x - 5)(x + 5) \)[/tex]
Comparing these with our factorization [tex]\( (3x - 5)(3x + 5) \)[/tex], we see that the correct factorization corresponds to Option 1:
Thus, the completely factored form of [tex]\( 9x^2 - 25 \)[/tex] is:
[tex]\[ (3x - 5)(3x + 5) \][/tex]
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.