Westonci.ca offers quick and accurate answers to your questions. Join our community and get the insights you need today. Join our platform to get reliable answers to your questions from a knowledgeable community of experts. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
To derive the exponential function that best fits the given data, we can follow these steps:
1. Transform the Exponential Relationship to a Linear One:
Given the exponential model [tex]\( y = ab^x \)[/tex], we take the natural logarithm of both sides to linearize it:
[tex]\[ \ln(y) = \ln(a) + x \ln(b) \][/tex]
Here, we let [tex]\( Y = \ln(y) \)[/tex], [tex]\( A = \ln(a) \)[/tex], and [tex]\( B = \ln(b) \)[/tex]:
[tex]\[ Y = A + Bx \][/tex]
This equation represents a linear relationship between [tex]\( Y \)[/tex] and [tex]\( x \)[/tex].
2. Construct the Transformed Dataset:
Using the given data, we compute [tex]\( Y \)[/tex] as [tex]\( \ln(y) \)[/tex]:
[tex]\[ x: -3, \quad y: \frac{3}{64} \quad \Rightarrow \quad \ln\left(\frac{3}{64}\right) \][/tex]
[tex]\[ x: -2, \quad y: \frac{3}{16} \quad \Rightarrow \quad \ln\left(\frac{3}{16}\right) \][/tex]
[tex]\[ x: -1, \quad y: \frac{3}{4} \quad \Rightarrow \quad \ln\left(\frac{3}{4}\right) \][/tex]
[tex]\[ x: 0, \quad y: 3 \quad \Rightarrow \quad \ln(3) \][/tex]
[tex]\[ x: 1, \quad y: 12 \quad \Rightarrow \quad \ln(12) \][/tex]
[tex]\[ x: 2, \quad y: 48 \quad \Rightarrow \quad \ln(48) \][/tex]
[tex]\[ x: 3, \quad y: 192 \quad \Rightarrow \quad \ln(192) \][/tex]
[tex]\[ x: 4, \quad y: 768 \quad \Rightarrow \quad \ln(768) \][/tex]
3. Perform Linear Regression on the Transformed Data:
We fit the transformed data [tex]\((x, \ln(y))\)[/tex] to the linear model [tex]\( Y = A + Bx \)[/tex] to find the coefficients [tex]\( A \)[/tex] and [tex]\( B \)[/tex].
4. Interpret the Regression Coefficients:
After fitting the linear model, we obtain the coefficients:
[tex]\[ A = 1.09861229, \quad B = 1.38629436 \][/tex]
To revert to the exponential form, we need to transform the coefficients back:
[tex]\[ a = e^A = e^{1.09861229} \approx 3.0000000000000004 \][/tex]
[tex]\[ b = e^B = e^{1.38629436} \approx 4.000000000000003 \][/tex]
Therefore, the exponential function that models the given data is:
[tex]\[ y = 3 \cdot 4^x \][/tex]
1. Transform the Exponential Relationship to a Linear One:
Given the exponential model [tex]\( y = ab^x \)[/tex], we take the natural logarithm of both sides to linearize it:
[tex]\[ \ln(y) = \ln(a) + x \ln(b) \][/tex]
Here, we let [tex]\( Y = \ln(y) \)[/tex], [tex]\( A = \ln(a) \)[/tex], and [tex]\( B = \ln(b) \)[/tex]:
[tex]\[ Y = A + Bx \][/tex]
This equation represents a linear relationship between [tex]\( Y \)[/tex] and [tex]\( x \)[/tex].
2. Construct the Transformed Dataset:
Using the given data, we compute [tex]\( Y \)[/tex] as [tex]\( \ln(y) \)[/tex]:
[tex]\[ x: -3, \quad y: \frac{3}{64} \quad \Rightarrow \quad \ln\left(\frac{3}{64}\right) \][/tex]
[tex]\[ x: -2, \quad y: \frac{3}{16} \quad \Rightarrow \quad \ln\left(\frac{3}{16}\right) \][/tex]
[tex]\[ x: -1, \quad y: \frac{3}{4} \quad \Rightarrow \quad \ln\left(\frac{3}{4}\right) \][/tex]
[tex]\[ x: 0, \quad y: 3 \quad \Rightarrow \quad \ln(3) \][/tex]
[tex]\[ x: 1, \quad y: 12 \quad \Rightarrow \quad \ln(12) \][/tex]
[tex]\[ x: 2, \quad y: 48 \quad \Rightarrow \quad \ln(48) \][/tex]
[tex]\[ x: 3, \quad y: 192 \quad \Rightarrow \quad \ln(192) \][/tex]
[tex]\[ x: 4, \quad y: 768 \quad \Rightarrow \quad \ln(768) \][/tex]
3. Perform Linear Regression on the Transformed Data:
We fit the transformed data [tex]\((x, \ln(y))\)[/tex] to the linear model [tex]\( Y = A + Bx \)[/tex] to find the coefficients [tex]\( A \)[/tex] and [tex]\( B \)[/tex].
4. Interpret the Regression Coefficients:
After fitting the linear model, we obtain the coefficients:
[tex]\[ A = 1.09861229, \quad B = 1.38629436 \][/tex]
To revert to the exponential form, we need to transform the coefficients back:
[tex]\[ a = e^A = e^{1.09861229} \approx 3.0000000000000004 \][/tex]
[tex]\[ b = e^B = e^{1.38629436} \approx 4.000000000000003 \][/tex]
Therefore, the exponential function that models the given data is:
[tex]\[ y = 3 \cdot 4^x \][/tex]
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.