Looking for answers? Westonci.ca is your go-to Q&A platform, offering quick, trustworthy responses from a community of experts. Experience the convenience of getting accurate answers to your questions from a dedicated community of professionals. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
Let's analyze the given system of linear equations and deduce the key points:
We are given the system:
[tex]\[ -2x + y = -6 \][/tex]
[tex]\[ 2x = -6 + y \][/tex]
Firstly, we want to determine the relationship between the two equations. Let's rewrite both in standard form.
Equation 1:
[tex]\[ -2x + y = -6 \][/tex]
Equation 2 can be rearranged as:
[tex]\[ 2x - y = -6 \][/tex]
### Step-by-Step Solution:
1. Set up the Equations:
[tex]\[ -2x + y = -6 \ \ \ \ \ \text{(Equation 1)}\][/tex]
[tex]\[ 2x - y = -6 \ \ \ \ \ \text{(Equation 2) }\][/tex]
2. Add the Equations:
By adding Equation 1 and Equation 2, we eliminate [tex]\(y\)[/tex]:
[tex]\[ (-2x + y) + (2x - y) = -6 + (-6) \][/tex]
[tex]\[ -2x + y + 2x - y = -12 \][/tex]
[tex]\[ 0 = -12 \][/tex]
This equation, [tex]\(0 = -12\)[/tex], is a contradiction.
3. Conclusion about the Nature of the Solutions:
Since we've arrived at a contradiction, it implies that there is no solution that fits both equations simultaneously. Therefore, the system has no solution.
4. Interpreting the Results:
[tex]\[ \begin{tabular}{|c|l} \hline System B & The system has no solution. \\ $(x, y) = (\square, \square)$ \\ $-2x + y = -6$ & The system has a unique solution: \\ $2x = -6 + y$ & The system has infinitely many solutions. \\ They must satisfy the following equation: \\ $y = \square$ \\ \end{tabular} \][/tex]
From our analysis:
- The system has no solution: True.
- The system has a unique solution: False.
- The system has infinitely many solutions: False.
- Specific equations satisfying infinite solutions: Not applicable since there are no solutions.
Therefore, we fill in the table as follows:
[tex]\[ \begin{tabular}{|c|l} \hline System B & The system has no solution. \\ $(x, y) = (\square, \square)$ \\ $-2x + y = -6$ & The system has a unique solution: \\ $2x = -6 + y$ & The system has infinitely many solutions. \\ They must satisfy the following equation: \\ $y = \square$ \\ \end{tabular} \][/tex]
Given the nature of the system:
- [tex]$(x,y) = (\square, \square)$[/tex] remains blank indicating no solution exists.
- The system has no solution: Checked as true.
We are given the system:
[tex]\[ -2x + y = -6 \][/tex]
[tex]\[ 2x = -6 + y \][/tex]
Firstly, we want to determine the relationship between the two equations. Let's rewrite both in standard form.
Equation 1:
[tex]\[ -2x + y = -6 \][/tex]
Equation 2 can be rearranged as:
[tex]\[ 2x - y = -6 \][/tex]
### Step-by-Step Solution:
1. Set up the Equations:
[tex]\[ -2x + y = -6 \ \ \ \ \ \text{(Equation 1)}\][/tex]
[tex]\[ 2x - y = -6 \ \ \ \ \ \text{(Equation 2) }\][/tex]
2. Add the Equations:
By adding Equation 1 and Equation 2, we eliminate [tex]\(y\)[/tex]:
[tex]\[ (-2x + y) + (2x - y) = -6 + (-6) \][/tex]
[tex]\[ -2x + y + 2x - y = -12 \][/tex]
[tex]\[ 0 = -12 \][/tex]
This equation, [tex]\(0 = -12\)[/tex], is a contradiction.
3. Conclusion about the Nature of the Solutions:
Since we've arrived at a contradiction, it implies that there is no solution that fits both equations simultaneously. Therefore, the system has no solution.
4. Interpreting the Results:
[tex]\[ \begin{tabular}{|c|l} \hline System B & The system has no solution. \\ $(x, y) = (\square, \square)$ \\ $-2x + y = -6$ & The system has a unique solution: \\ $2x = -6 + y$ & The system has infinitely many solutions. \\ They must satisfy the following equation: \\ $y = \square$ \\ \end{tabular} \][/tex]
From our analysis:
- The system has no solution: True.
- The system has a unique solution: False.
- The system has infinitely many solutions: False.
- Specific equations satisfying infinite solutions: Not applicable since there are no solutions.
Therefore, we fill in the table as follows:
[tex]\[ \begin{tabular}{|c|l} \hline System B & The system has no solution. \\ $(x, y) = (\square, \square)$ \\ $-2x + y = -6$ & The system has a unique solution: \\ $2x = -6 + y$ & The system has infinitely many solutions. \\ They must satisfy the following equation: \\ $y = \square$ \\ \end{tabular} \][/tex]
Given the nature of the system:
- [tex]$(x,y) = (\square, \square)$[/tex] remains blank indicating no solution exists.
- The system has no solution: Checked as true.
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.