Welcome to Westonci.ca, your ultimate destination for finding answers to a wide range of questions from experts. Get immediate answers to your questions from a wide network of experienced professionals on our Q&A platform. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
Let's find the least common denominator (LCD) for the given pair of rational expressions:
[tex]\[ \frac{7}{k^2 + 6k} \quad \text{and} \quad \frac{8}{k^2 + 3k - 18} \][/tex]
### Step 1: Factor the Denominators
First, we factor each denominator.
For the first denominator [tex]\(k^2 + 6k\)[/tex]:
[tex]\[ k^2 + 6k = k(k + 6) \][/tex]
So, the factorization is:
[tex]\[ k^2 + 6k = k(k + 6) \][/tex]
For the second denominator [tex]\(k^2 + 3k - 18\)[/tex]:
[tex]\[ k^2 + 3k - 18 = (k - 3)(k + 6) \][/tex]
### Step 2: Identify the Common Factors
We have the factorizations:
[tex]\[ k^2 + 6k = k(k + 6) \][/tex]
[tex]\[ k^2 + 3k - 18 = (k - 3)(k + 6) \][/tex]
### Step 3: Determine the Least Common Denominator
The least common denominator (LCD) is the least common multiple (LCM) of the two factored denominators. To find this, we need to take each distinct factor to the highest power in which it appears in any of the factorizations.
- The factors from [tex]\(k^2 + 6k\)[/tex] are [tex]\(k\)[/tex] and [tex]\(k + 6\)[/tex].
- The factors from [tex]\(k^2 + 3k - 18\)[/tex] are [tex]\(k - 3\)[/tex] and [tex]\(k + 6\)[/tex].
Combining these, the LCD will include each distinct factor:
- [tex]\(k\)[/tex]
- [tex]\(k + 6\)[/tex]
- [tex]\(k - 3\)[/tex]
The product of these factors gives us the LCD:
[tex]\[ \text{LCD} = k \cdot (k + 6) \cdot (k - 3) \][/tex]
### Step 4: Simplify the Expression (if needed)
The final simplified form of the LCD is found by multiplying these factors out:
[tex]\[ k \cdot (k^2 + 3k - 18) = k^3 + 3k^2 - 18k \][/tex]
### Conclusion
Thus, the least common denominator (LCD) of the given rational expressions is:
[tex]\[ k^3 + 3k^2 - 18k \][/tex]
So, the denominators and their factorizations are:
[tex]\[ k^2 + 6k = k(k + 6) \][/tex]
[tex]\[ k^2 + 3k - 18 = (k - 3)(k + 6) \][/tex]
And the least common denominator is:
[tex]\[ k^3 + 3k^2 - 18k \][/tex]
[tex]\[ \frac{7}{k^2 + 6k} \quad \text{and} \quad \frac{8}{k^2 + 3k - 18} \][/tex]
### Step 1: Factor the Denominators
First, we factor each denominator.
For the first denominator [tex]\(k^2 + 6k\)[/tex]:
[tex]\[ k^2 + 6k = k(k + 6) \][/tex]
So, the factorization is:
[tex]\[ k^2 + 6k = k(k + 6) \][/tex]
For the second denominator [tex]\(k^2 + 3k - 18\)[/tex]:
[tex]\[ k^2 + 3k - 18 = (k - 3)(k + 6) \][/tex]
### Step 2: Identify the Common Factors
We have the factorizations:
[tex]\[ k^2 + 6k = k(k + 6) \][/tex]
[tex]\[ k^2 + 3k - 18 = (k - 3)(k + 6) \][/tex]
### Step 3: Determine the Least Common Denominator
The least common denominator (LCD) is the least common multiple (LCM) of the two factored denominators. To find this, we need to take each distinct factor to the highest power in which it appears in any of the factorizations.
- The factors from [tex]\(k^2 + 6k\)[/tex] are [tex]\(k\)[/tex] and [tex]\(k + 6\)[/tex].
- The factors from [tex]\(k^2 + 3k - 18\)[/tex] are [tex]\(k - 3\)[/tex] and [tex]\(k + 6\)[/tex].
Combining these, the LCD will include each distinct factor:
- [tex]\(k\)[/tex]
- [tex]\(k + 6\)[/tex]
- [tex]\(k - 3\)[/tex]
The product of these factors gives us the LCD:
[tex]\[ \text{LCD} = k \cdot (k + 6) \cdot (k - 3) \][/tex]
### Step 4: Simplify the Expression (if needed)
The final simplified form of the LCD is found by multiplying these factors out:
[tex]\[ k \cdot (k^2 + 3k - 18) = k^3 + 3k^2 - 18k \][/tex]
### Conclusion
Thus, the least common denominator (LCD) of the given rational expressions is:
[tex]\[ k^3 + 3k^2 - 18k \][/tex]
So, the denominators and their factorizations are:
[tex]\[ k^2 + 6k = k(k + 6) \][/tex]
[tex]\[ k^2 + 3k - 18 = (k - 3)(k + 6) \][/tex]
And the least common denominator is:
[tex]\[ k^3 + 3k^2 - 18k \][/tex]
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.