Westonci.ca makes finding answers easy, with a community of experts ready to provide you with the information you seek. Connect with professionals on our platform to receive accurate answers to your questions quickly and efficiently. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
Let's analyze the chemical reaction and given data step by step:
Balanced Equation:
[tex]\[ P_4(s) + 6H_2(g) \rightarrow 4PH_3(g) \][/tex]
This equation tells us the molar ratios between the reactants and the products:
- 1 mole of [tex]\( P_4 \)[/tex] reacts with 6 moles of [tex]\( H_2 \)[/tex] to produce 4 moles of [tex]\( PH_3 \)[/tex].
Given data:
- [tex]\( 7.0 \)[/tex] moles of [tex]\( H_2 \)[/tex]
- [tex]\( 3.5 \)[/tex] moles of [tex]\( P_4 \)[/tex]
- [tex]\( 14.0 \)[/tex] moles of [tex]\( PH_3 \)[/tex] produced.
Let's answer the specific parts step by step.
### 1. Moles of [tex]\( P_4 \)[/tex] needed:
How much [tex]\( P_4 \)[/tex] is needed to react with [tex]\( 7.0 \)[/tex] moles of [tex]\( H_2 \)[/tex]?
From the balanced equation, [tex]\( 6 \)[/tex] moles of [tex]\( H_2 \)[/tex] react with [tex]\( 1 \)[/tex] mole of [tex]\( P_4 \)[/tex].
[tex]\[ \text{Moles of } P_4 \text{ needed} = \frac{7.0 \, \text{moles of } H_2}{6} = 1.1667 \, \text{moles of } P_4 \][/tex]
So, approximately 1.167 moles of [tex]\( P_4 \)[/tex] are needed to react with 7.0 moles of [tex]\( H_2 \)[/tex].
### 2. Possible Production of [tex]\( PH_3 \)[/tex]:
Given [tex]\( 3.5 \)[/tex] moles of [tex]\( P_4 \)[/tex], how much [tex]\( PH_3 \)[/tex] can be produced?
From the stoichiometry of the balanced equation, [tex]\( 1 \)[/tex] mole of [tex]\( P_4 \)[/tex] produces [tex]\( 4 \)[/tex] moles of [tex]\( PH_3 \)[/tex].
[tex]\[ \text{Moles of } PH_3 \text{ produced} = 3.5 \times 4 = 14.0 \, \text{moles of } PH_3 \][/tex]
Thus, [tex]\( 14.0 \)[/tex] moles of [tex]\( PH_3 \)[/tex] can be produced with the given [tex]\( 3.5 \)[/tex] moles of [tex]\( P_4 \)[/tex].
### 3. Possible Reaction with [tex]\( P_4 \)[/tex]:
Using the [tex]\( 7.0 \)[/tex] moles of [tex]\( H_2 \)[/tex], how much [tex]\( P_4 \)[/tex] could react?
From the balanced equation and the molar ratio:
[tex]\[ \text{Moles of } P_4 \text{ that could react} = \frac{7.0 \, \text{moles of } H_2}{\frac{1}{6}} = 7.0 \times 6 = 42.0 \, \text{moles of } P_4 \][/tex]
Thus, [tex]\( 7.0 \)[/tex] moles of [tex]\( H_2 \)[/tex] could potentially react with [tex]\( 42.0 \)[/tex] moles of [tex]\( P_4 \)[/tex].
### Summary:
- 1.167 moles of [tex]\( P_4 \)[/tex] are needed to react with [tex]\( 7.0 \)[/tex] moles of [tex]\( H_2 \)[/tex].
- [tex]\( 14.0 \)[/tex] moles of [tex]\( PH_3 \)[/tex] can be produced with the given [tex]\( 3.5 \)[/tex] moles of [tex]\( P_4 \)[/tex].
- [tex]\( 7.0 \)[/tex] moles of [tex]\( H_2 \)[/tex] could potentially react with [tex]\( 42.0 \)[/tex] moles of [tex]\( P_4 \)[/tex].
Balanced Equation:
[tex]\[ P_4(s) + 6H_2(g) \rightarrow 4PH_3(g) \][/tex]
This equation tells us the molar ratios between the reactants and the products:
- 1 mole of [tex]\( P_4 \)[/tex] reacts with 6 moles of [tex]\( H_2 \)[/tex] to produce 4 moles of [tex]\( PH_3 \)[/tex].
Given data:
- [tex]\( 7.0 \)[/tex] moles of [tex]\( H_2 \)[/tex]
- [tex]\( 3.5 \)[/tex] moles of [tex]\( P_4 \)[/tex]
- [tex]\( 14.0 \)[/tex] moles of [tex]\( PH_3 \)[/tex] produced.
Let's answer the specific parts step by step.
### 1. Moles of [tex]\( P_4 \)[/tex] needed:
How much [tex]\( P_4 \)[/tex] is needed to react with [tex]\( 7.0 \)[/tex] moles of [tex]\( H_2 \)[/tex]?
From the balanced equation, [tex]\( 6 \)[/tex] moles of [tex]\( H_2 \)[/tex] react with [tex]\( 1 \)[/tex] mole of [tex]\( P_4 \)[/tex].
[tex]\[ \text{Moles of } P_4 \text{ needed} = \frac{7.0 \, \text{moles of } H_2}{6} = 1.1667 \, \text{moles of } P_4 \][/tex]
So, approximately 1.167 moles of [tex]\( P_4 \)[/tex] are needed to react with 7.0 moles of [tex]\( H_2 \)[/tex].
### 2. Possible Production of [tex]\( PH_3 \)[/tex]:
Given [tex]\( 3.5 \)[/tex] moles of [tex]\( P_4 \)[/tex], how much [tex]\( PH_3 \)[/tex] can be produced?
From the stoichiometry of the balanced equation, [tex]\( 1 \)[/tex] mole of [tex]\( P_4 \)[/tex] produces [tex]\( 4 \)[/tex] moles of [tex]\( PH_3 \)[/tex].
[tex]\[ \text{Moles of } PH_3 \text{ produced} = 3.5 \times 4 = 14.0 \, \text{moles of } PH_3 \][/tex]
Thus, [tex]\( 14.0 \)[/tex] moles of [tex]\( PH_3 \)[/tex] can be produced with the given [tex]\( 3.5 \)[/tex] moles of [tex]\( P_4 \)[/tex].
### 3. Possible Reaction with [tex]\( P_4 \)[/tex]:
Using the [tex]\( 7.0 \)[/tex] moles of [tex]\( H_2 \)[/tex], how much [tex]\( P_4 \)[/tex] could react?
From the balanced equation and the molar ratio:
[tex]\[ \text{Moles of } P_4 \text{ that could react} = \frac{7.0 \, \text{moles of } H_2}{\frac{1}{6}} = 7.0 \times 6 = 42.0 \, \text{moles of } P_4 \][/tex]
Thus, [tex]\( 7.0 \)[/tex] moles of [tex]\( H_2 \)[/tex] could potentially react with [tex]\( 42.0 \)[/tex] moles of [tex]\( P_4 \)[/tex].
### Summary:
- 1.167 moles of [tex]\( P_4 \)[/tex] are needed to react with [tex]\( 7.0 \)[/tex] moles of [tex]\( H_2 \)[/tex].
- [tex]\( 14.0 \)[/tex] moles of [tex]\( PH_3 \)[/tex] can be produced with the given [tex]\( 3.5 \)[/tex] moles of [tex]\( P_4 \)[/tex].
- [tex]\( 7.0 \)[/tex] moles of [tex]\( H_2 \)[/tex] could potentially react with [tex]\( 42.0 \)[/tex] moles of [tex]\( P_4 \)[/tex].
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.