Discover answers to your questions with Westonci.ca, the leading Q&A platform that connects you with knowledgeable experts. Discover comprehensive solutions to your questions from a wide network of experts on our user-friendly platform. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
To solve for the distance between the two charges given their electric potential energy, we can use the formula for electric potential energy between two point charges:
[tex]\[ U = k \frac{|q_1 \cdot q_2|}{r} \][/tex]
where:
- [tex]\( U \)[/tex] is the electric potential energy,
- [tex]\( k \)[/tex] is Coulomb's constant ([tex]\( 8.99 \times 10^9 \, \text{N m}^2/\text{C}^2 \)[/tex]),
- [tex]\( q_1 \)[/tex] and [tex]\( q_2 \)[/tex] are the magnitudes of the charges,
- [tex]\( r \)[/tex] is the distance between the charges.
We need to rearrange the formula to solve for [tex]\( r \)[/tex]:
[tex]\[ r = k \frac{|q_1 \cdot q_2|}{U} \][/tex]
Given:
- [tex]\( q_1 = 4.33 \times 10^{-6} \, \text{C} \)[/tex]
- [tex]\( q_2 = -7.81 \times 10^{-4} \, \text{C} \)[/tex]
- [tex]\( U = 44.9 \, \text{J} \)[/tex]
and
[tex]\[ k = 8.99 \times 10^9 \, \text{N m}^2/\text{C}^2 \][/tex]
First, calculate the absolute value of the product of the charges:
[tex]\[ |q_1 \cdot q_2| = |(4.33 \times 10^{-6} \, \text{C}) \cdot (-7.81 \times 10^{-4} \, \text{C})| \][/tex]
[tex]\[ = |4.33 \times 10^{-6} \cdot (-7.81 \times 10^{-4})| \][/tex]
[tex]\[ = |4.33 \cdot -7.81| \times 10^{-10} \][/tex]
[tex]\[ = 33.8073 \times 10^{-10} \][/tex]
[tex]\[ = 3.38073 \times 10^{-9} \, \text{C}^2 \][/tex]
Next, plug this value into the rearranged formula along with the given values for [tex]\( k \)[/tex] and [tex]\( U \)[/tex]:
[tex]\[ r = 8.99 \times 10^9 \frac{\text{N m}^2}{\text{C}^2} \times \frac{3.38073 \times 10^{-9} \, \text{C}^2}{44.9 \, \text{J}} \][/tex]
[tex]\[ = \frac{8.99 \times 10^9 \times 3.38073 \times 10^{-9}}{44.9} \][/tex]
[tex]\[ = \frac{30.4057627}{44.9} \][/tex]
[tex]\[ = 0.6770991692650334 \, \text{m} \][/tex]
Therefore, the distance between the two charges is approximately [tex]\( 0.677 \)[/tex] meters.
[tex]\[ U = k \frac{|q_1 \cdot q_2|}{r} \][/tex]
where:
- [tex]\( U \)[/tex] is the electric potential energy,
- [tex]\( k \)[/tex] is Coulomb's constant ([tex]\( 8.99 \times 10^9 \, \text{N m}^2/\text{C}^2 \)[/tex]),
- [tex]\( q_1 \)[/tex] and [tex]\( q_2 \)[/tex] are the magnitudes of the charges,
- [tex]\( r \)[/tex] is the distance between the charges.
We need to rearrange the formula to solve for [tex]\( r \)[/tex]:
[tex]\[ r = k \frac{|q_1 \cdot q_2|}{U} \][/tex]
Given:
- [tex]\( q_1 = 4.33 \times 10^{-6} \, \text{C} \)[/tex]
- [tex]\( q_2 = -7.81 \times 10^{-4} \, \text{C} \)[/tex]
- [tex]\( U = 44.9 \, \text{J} \)[/tex]
and
[tex]\[ k = 8.99 \times 10^9 \, \text{N m}^2/\text{C}^2 \][/tex]
First, calculate the absolute value of the product of the charges:
[tex]\[ |q_1 \cdot q_2| = |(4.33 \times 10^{-6} \, \text{C}) \cdot (-7.81 \times 10^{-4} \, \text{C})| \][/tex]
[tex]\[ = |4.33 \times 10^{-6} \cdot (-7.81 \times 10^{-4})| \][/tex]
[tex]\[ = |4.33 \cdot -7.81| \times 10^{-10} \][/tex]
[tex]\[ = 33.8073 \times 10^{-10} \][/tex]
[tex]\[ = 3.38073 \times 10^{-9} \, \text{C}^2 \][/tex]
Next, plug this value into the rearranged formula along with the given values for [tex]\( k \)[/tex] and [tex]\( U \)[/tex]:
[tex]\[ r = 8.99 \times 10^9 \frac{\text{N m}^2}{\text{C}^2} \times \frac{3.38073 \times 10^{-9} \, \text{C}^2}{44.9 \, \text{J}} \][/tex]
[tex]\[ = \frac{8.99 \times 10^9 \times 3.38073 \times 10^{-9}}{44.9} \][/tex]
[tex]\[ = \frac{30.4057627}{44.9} \][/tex]
[tex]\[ = 0.6770991692650334 \, \text{m} \][/tex]
Therefore, the distance between the two charges is approximately [tex]\( 0.677 \)[/tex] meters.
Thank you for choosing our service. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.