Welcome to Westonci.ca, your ultimate destination for finding answers to a wide range of questions from experts. Find reliable answers to your questions from a wide community of knowledgeable experts on our user-friendly Q&A platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
To determine the number of roots of the polynomial [tex]\( f(x) = x^4 + x^3 - 7x^2 - x + 6 \)[/tex], we need to find the values of [tex]\( x \)[/tex] that make the polynomial equal to zero. These values are known as the roots of the polynomial.
A polynomial of degree [tex]\( n \)[/tex] has exactly [tex]\( n \)[/tex] roots in the complex number system, considering multiplicity (where some roots can repeat).
Here, the polynomial [tex]\( f(x) = x^4 + x^3 - 7x^2 - x + 6 \)[/tex] is a fourth-degree polynomial ([tex]\( n = 4 \)[/tex]). Therefore, we expect it to have exactly 4 roots in the complex number system.
Let’s confirm this by finding the roots of the polynomial.
Step-by-Step:
1. Initial Analysis:
- The polynomial [tex]\( f(x) = x^4 + x^3 - 7x^2 - x + 6 \)[/tex] is of degree 4.
2. Finding Rational Roots:
- Use the Rational Root Theorem, which states that possible rational roots are the factors of the constant term (6) divided by the factors of the leading coefficient (1).
- Possible rational roots: [tex]\( \pm 1, \pm 2, \pm 3, \pm 6 \)[/tex].
3. Test Possible Roots:
- Substitute the possible rational roots into the polynomial to check if they satisfy [tex]\( f(x) = 0 \)[/tex].
- Testing [tex]\( x = 1 \)[/tex]:
[tex]\[ f(1) = 1^4 + 1^3 - 7(1)^2 - 1 + 6 = 1 + 1 - 7 - 1 + 6 = 0 \][/tex]
- [tex]\( x = 1 \)[/tex] is a root.
- Testing [tex]\( x = -1 \)[/tex]:
[tex]\[ f(-1) = (-1)^4 + (-1)^3 - 7(-1)^2 - (-1) + 6 = 1 - 1 - 7 + 1 + 6 = 0 \][/tex]
- [tex]\( x = -1 \)[/tex] is a root.
4. Polynomial Factorization:
- Since [tex]\( x = 1 \)[/tex] and [tex]\( x = -1 \)[/tex] are roots, we can factor the polynomial as:
[tex]\[ f(x) = (x - 1)(x + 1)(quadratic\ polynomial) \][/tex]
5. Finding the Remaining Quadratic Polynomial:
- Perform polynomial division to divide [tex]\( f(x) \)[/tex] by [tex]\( (x - 1)(x + 1) = x^2 - 1 \)[/tex]:
[tex]\[ \frac{x^4 + x^3 - 7x^2 - x + 6}{x^2 - 1} = x^2 + x - 6 \][/tex]
6. Roots of Quadratic Polynomial:
- Solve [tex]\( x^2 + x - 6 = 0 \)[/tex] using the quadratic formula:
[tex]\[ x = \frac{{-b \pm \sqrt{{b^2 - 4ac}}}}{2a} \][/tex]
Here, [tex]\( a = 1 \)[/tex], [tex]\( b = 1 \)[/tex], [tex]\( c = -6 \)[/tex]:
[tex]\[ x = \frac{{-1 \pm \sqrt{{1^2 - 4 \cdot 1 \cdot (-6)}}}}{2 \cdot 1} = \frac{{-1 \pm \sqrt{{1 + 24}}}}{2} = \frac{{-1 \pm \sqrt{25}}}{2} = \frac{{-1 \pm 5}}{2} \][/tex]
[tex]\[ x = 2 \quad \text{and} \quad x = -3 \][/tex]
- Roots of the quadratic polynomial: [tex]\( x = 2 \)[/tex], [tex]\( x = -3 \)[/tex].
7. All Roots of the Polynomial:
- Combining all the roots: [tex]\( x = 1, x = -1, x = 2, x = -3 \)[/tex].
Thus, the polynomial [tex]\( f(x) = x^4 + x^3 - 7x^2 - x + 6 \)[/tex] has 4 roots.
Answer: The number of roots of the polynomial is 4.
A polynomial of degree [tex]\( n \)[/tex] has exactly [tex]\( n \)[/tex] roots in the complex number system, considering multiplicity (where some roots can repeat).
Here, the polynomial [tex]\( f(x) = x^4 + x^3 - 7x^2 - x + 6 \)[/tex] is a fourth-degree polynomial ([tex]\( n = 4 \)[/tex]). Therefore, we expect it to have exactly 4 roots in the complex number system.
Let’s confirm this by finding the roots of the polynomial.
Step-by-Step:
1. Initial Analysis:
- The polynomial [tex]\( f(x) = x^4 + x^3 - 7x^2 - x + 6 \)[/tex] is of degree 4.
2. Finding Rational Roots:
- Use the Rational Root Theorem, which states that possible rational roots are the factors of the constant term (6) divided by the factors of the leading coefficient (1).
- Possible rational roots: [tex]\( \pm 1, \pm 2, \pm 3, \pm 6 \)[/tex].
3. Test Possible Roots:
- Substitute the possible rational roots into the polynomial to check if they satisfy [tex]\( f(x) = 0 \)[/tex].
- Testing [tex]\( x = 1 \)[/tex]:
[tex]\[ f(1) = 1^4 + 1^3 - 7(1)^2 - 1 + 6 = 1 + 1 - 7 - 1 + 6 = 0 \][/tex]
- [tex]\( x = 1 \)[/tex] is a root.
- Testing [tex]\( x = -1 \)[/tex]:
[tex]\[ f(-1) = (-1)^4 + (-1)^3 - 7(-1)^2 - (-1) + 6 = 1 - 1 - 7 + 1 + 6 = 0 \][/tex]
- [tex]\( x = -1 \)[/tex] is a root.
4. Polynomial Factorization:
- Since [tex]\( x = 1 \)[/tex] and [tex]\( x = -1 \)[/tex] are roots, we can factor the polynomial as:
[tex]\[ f(x) = (x - 1)(x + 1)(quadratic\ polynomial) \][/tex]
5. Finding the Remaining Quadratic Polynomial:
- Perform polynomial division to divide [tex]\( f(x) \)[/tex] by [tex]\( (x - 1)(x + 1) = x^2 - 1 \)[/tex]:
[tex]\[ \frac{x^4 + x^3 - 7x^2 - x + 6}{x^2 - 1} = x^2 + x - 6 \][/tex]
6. Roots of Quadratic Polynomial:
- Solve [tex]\( x^2 + x - 6 = 0 \)[/tex] using the quadratic formula:
[tex]\[ x = \frac{{-b \pm \sqrt{{b^2 - 4ac}}}}{2a} \][/tex]
Here, [tex]\( a = 1 \)[/tex], [tex]\( b = 1 \)[/tex], [tex]\( c = -6 \)[/tex]:
[tex]\[ x = \frac{{-1 \pm \sqrt{{1^2 - 4 \cdot 1 \cdot (-6)}}}}{2 \cdot 1} = \frac{{-1 \pm \sqrt{{1 + 24}}}}{2} = \frac{{-1 \pm \sqrt{25}}}{2} = \frac{{-1 \pm 5}}{2} \][/tex]
[tex]\[ x = 2 \quad \text{and} \quad x = -3 \][/tex]
- Roots of the quadratic polynomial: [tex]\( x = 2 \)[/tex], [tex]\( x = -3 \)[/tex].
7. All Roots of the Polynomial:
- Combining all the roots: [tex]\( x = 1, x = -1, x = 2, x = -3 \)[/tex].
Thus, the polynomial [tex]\( f(x) = x^4 + x^3 - 7x^2 - x + 6 \)[/tex] has 4 roots.
Answer: The number of roots of the polynomial is 4.
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.