At Westonci.ca, we connect you with experts who provide detailed answers to your most pressing questions. Start exploring now! Explore thousands of questions and answers from knowledgeable experts in various fields on our Q&A platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
To find [tex]\(\mu_x\)[/tex] (the mean of the sampling distribution of the sample mean) and [tex]\(\sigma_x\)[/tex] (the standard deviation of the sampling distribution of the sample mean), follow these steps:
1. List the sample means:
We have the sample means given in the table:
- Sample 1: 2.00
- Sample 2: 2.50
- Sample 3: 3.00
- Sample 4: 2.50
- Sample 5: 3.00
- Sample 6: 3.50
- Sample 7: 3.00
- Sample 8: 3.50
- Sample 9: 4.00
2. Calculate the mean of the sample means ([tex]\(\mu_x\)[/tex]):
[tex]\[ \mu_x = \frac{\sum \bar{x}}{n} \][/tex]
[tex]\(\sum \bar{x}\)[/tex] is the sum of all sample means.
Calculate [tex]\(\sum \bar{x}\)[/tex]:
[tex]\[ 2.00 + 2.50 + 3.00 + 2.50 + 3.00 + 3.50 + 3.00 + 3.50 + 4.00 = 27.00 \][/tex]
Now, divide by the number of samples [tex]\(n = 9\)[/tex]:
[tex]\[ \mu_x = \frac{27.00}{9} = 3.00 \][/tex]
3. Calculate the standard deviation of the sample means ([tex]\(\sigma_x\)[/tex]):
[tex]\[ \sigma_x = \sqrt{\frac{\sum (\bar{x} - \mu_x)^2}{n}} \][/tex]
Where [tex]\(\sum (\bar{x} - \mu_x)^2\)[/tex] is the sum of the squared differences between each sample mean and [tex]\(\mu_x\)[/tex].
First, find each [tex]\(\bar{x} - \mu_x\)[/tex]:
[tex]\[ (2.00 - 3.00), (2.50 - 3.00), (3.00 - 3.00), (2.50 - 3.00), (3.00 - 3.00), (3.50 - 3.00), (3.00 - 3.00), (3.50 - 3.00), (4.00 - 3.00) \][/tex]
Which simplifies to:
[tex]\[ -1.00, -0.50, 0.00, -0.50, 0.00, 0.50, 0.00, 0.50, 1.00 \][/tex]
Now, square each difference:
[tex]\[ (-1.00)^2, (-0.50)^2, (0.00)^2, (-0.50)^2, (0.00)^2, (0.50)^2, (0.00)^2, (0.50)^2, (1.00)^2 \][/tex]
Which gives us:
[tex]\[ 1.00, 0.25, 0.00, 0.25, 0.00, 0.25, 0.00, 0.25, 1.00 \][/tex]
Now, sum these squared differences:
[tex]\[ 1.00 + 0.25 + 0.00 + 0.25 + 0.00 + 0.25 + 0.00 + 0.25 + 1.00 = 3.00 \][/tex]
Now, divide by [tex]\(n\)[/tex]:
[tex]\[ \frac{3.00}{9} = 0.3333 \][/tex]
Finally, take the square root:
[tex]\[ \sigma_x = \sqrt{0.3333} \approx 0.577 \][/tex]
Rounded to two decimal places:
[tex]\[ \sigma_x \approx 0.58 \][/tex]
So, the mean of the sampling distribution of the sample mean [tex]\(\mu_x\)[/tex] is [tex]\(3.00\)[/tex] and the standard deviation of the sampling distribution of the sample mean [tex]\(\sigma_x\)[/tex] is [tex]\(0.58\)[/tex].
1. List the sample means:
We have the sample means given in the table:
- Sample 1: 2.00
- Sample 2: 2.50
- Sample 3: 3.00
- Sample 4: 2.50
- Sample 5: 3.00
- Sample 6: 3.50
- Sample 7: 3.00
- Sample 8: 3.50
- Sample 9: 4.00
2. Calculate the mean of the sample means ([tex]\(\mu_x\)[/tex]):
[tex]\[ \mu_x = \frac{\sum \bar{x}}{n} \][/tex]
[tex]\(\sum \bar{x}\)[/tex] is the sum of all sample means.
Calculate [tex]\(\sum \bar{x}\)[/tex]:
[tex]\[ 2.00 + 2.50 + 3.00 + 2.50 + 3.00 + 3.50 + 3.00 + 3.50 + 4.00 = 27.00 \][/tex]
Now, divide by the number of samples [tex]\(n = 9\)[/tex]:
[tex]\[ \mu_x = \frac{27.00}{9} = 3.00 \][/tex]
3. Calculate the standard deviation of the sample means ([tex]\(\sigma_x\)[/tex]):
[tex]\[ \sigma_x = \sqrt{\frac{\sum (\bar{x} - \mu_x)^2}{n}} \][/tex]
Where [tex]\(\sum (\bar{x} - \mu_x)^2\)[/tex] is the sum of the squared differences between each sample mean and [tex]\(\mu_x\)[/tex].
First, find each [tex]\(\bar{x} - \mu_x\)[/tex]:
[tex]\[ (2.00 - 3.00), (2.50 - 3.00), (3.00 - 3.00), (2.50 - 3.00), (3.00 - 3.00), (3.50 - 3.00), (3.00 - 3.00), (3.50 - 3.00), (4.00 - 3.00) \][/tex]
Which simplifies to:
[tex]\[ -1.00, -0.50, 0.00, -0.50, 0.00, 0.50, 0.00, 0.50, 1.00 \][/tex]
Now, square each difference:
[tex]\[ (-1.00)^2, (-0.50)^2, (0.00)^2, (-0.50)^2, (0.00)^2, (0.50)^2, (0.00)^2, (0.50)^2, (1.00)^2 \][/tex]
Which gives us:
[tex]\[ 1.00, 0.25, 0.00, 0.25, 0.00, 0.25, 0.00, 0.25, 1.00 \][/tex]
Now, sum these squared differences:
[tex]\[ 1.00 + 0.25 + 0.00 + 0.25 + 0.00 + 0.25 + 0.00 + 0.25 + 1.00 = 3.00 \][/tex]
Now, divide by [tex]\(n\)[/tex]:
[tex]\[ \frac{3.00}{9} = 0.3333 \][/tex]
Finally, take the square root:
[tex]\[ \sigma_x = \sqrt{0.3333} \approx 0.577 \][/tex]
Rounded to two decimal places:
[tex]\[ \sigma_x \approx 0.58 \][/tex]
So, the mean of the sampling distribution of the sample mean [tex]\(\mu_x\)[/tex] is [tex]\(3.00\)[/tex] and the standard deviation of the sampling distribution of the sample mean [tex]\(\sigma_x\)[/tex] is [tex]\(0.58\)[/tex].
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.