Discover answers to your most pressing questions at Westonci.ca, the ultimate Q&A platform that connects you with expert solutions. Get immediate and reliable answers to your questions from a community of experienced experts on our platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
Certainly! To find a formula for the given trigonometric function, let's start with the general form of a cosine function with given amplitude, period, and phase shift.
The general form of a cosine function is:
[tex]\[ y = A \cos\left(\frac{2\pi}{T} (x - P)\right) + C \][/tex]
where:
- [tex]\( A \)[/tex] is the amplitude of the function,
- [tex]\( T \)[/tex] is the period of the function,
- [tex]\( P \)[/tex] is the phase shift (horizontal shift) of the function,
- [tex]\( C \)[/tex] is the vertical shift of the function.
Given the expression:
[tex]\[ y = 1.9 \cos\left(\frac{2 \pi}{[?]}(x - \quad)\right) + 0 \][/tex]
we need to identify and match the corresponding parameters:
1. Amplitude (A):
The coefficient of the cosine function gives the amplitude [tex]\( A \)[/tex]. Here, it is clearly [tex]\( 1.9 \)[/tex].
2. Vertical Shift (C):
The constant added to the cosine function gives the vertical shift [tex]\( C \)[/tex]. Here, it is [tex]\( 0 \)[/tex], indicating no vertical shift.
3. Period (T):
The period [tex]\( T \)[/tex] is given inside the argument of the cosine function. The expression [tex]\( \frac{2 \pi}{T} \)[/tex] represents how frequently the function completes one full cycle.
Since the period value is not given explicitly, we denote it as [tex]\( T \)[/tex].
4. Phase Shift (P):
The phase shift [tex]\( P \)[/tex] is represented by the horizontal shift [tex]\( x - P \)[/tex]. Similarly, since the phase shift is not specified in the expression, we denote it as [tex]\( P \)[/tex].
Putting it all together, we have:
[tex]\[ y = 1.9 \cos\left(\frac{2 \pi}{T} (x - P)\right) + 0 \][/tex]
This formula represents a cosine function with an amplitude of [tex]\( 1.9 \)[/tex], no vertical shift ([tex]\( C = 0 \)[/tex]), an unspecified period [tex]\( T \)[/tex], and an unspecified phase shift [tex]\( P \)[/tex].
Therefore, the function formula in terms of [tex]\( T \)[/tex] and [tex]\( P \)[/tex] is:
[tex]\[ y = 1.9 \cos\left(\frac{2 \pi}{T} (x - P)\right) + 0 \][/tex]
This is the desired result for the function.
The general form of a cosine function is:
[tex]\[ y = A \cos\left(\frac{2\pi}{T} (x - P)\right) + C \][/tex]
where:
- [tex]\( A \)[/tex] is the amplitude of the function,
- [tex]\( T \)[/tex] is the period of the function,
- [tex]\( P \)[/tex] is the phase shift (horizontal shift) of the function,
- [tex]\( C \)[/tex] is the vertical shift of the function.
Given the expression:
[tex]\[ y = 1.9 \cos\left(\frac{2 \pi}{[?]}(x - \quad)\right) + 0 \][/tex]
we need to identify and match the corresponding parameters:
1. Amplitude (A):
The coefficient of the cosine function gives the amplitude [tex]\( A \)[/tex]. Here, it is clearly [tex]\( 1.9 \)[/tex].
2. Vertical Shift (C):
The constant added to the cosine function gives the vertical shift [tex]\( C \)[/tex]. Here, it is [tex]\( 0 \)[/tex], indicating no vertical shift.
3. Period (T):
The period [tex]\( T \)[/tex] is given inside the argument of the cosine function. The expression [tex]\( \frac{2 \pi}{T} \)[/tex] represents how frequently the function completes one full cycle.
Since the period value is not given explicitly, we denote it as [tex]\( T \)[/tex].
4. Phase Shift (P):
The phase shift [tex]\( P \)[/tex] is represented by the horizontal shift [tex]\( x - P \)[/tex]. Similarly, since the phase shift is not specified in the expression, we denote it as [tex]\( P \)[/tex].
Putting it all together, we have:
[tex]\[ y = 1.9 \cos\left(\frac{2 \pi}{T} (x - P)\right) + 0 \][/tex]
This formula represents a cosine function with an amplitude of [tex]\( 1.9 \)[/tex], no vertical shift ([tex]\( C = 0 \)[/tex]), an unspecified period [tex]\( T \)[/tex], and an unspecified phase shift [tex]\( P \)[/tex].
Therefore, the function formula in terms of [tex]\( T \)[/tex] and [tex]\( P \)[/tex] is:
[tex]\[ y = 1.9 \cos\left(\frac{2 \pi}{T} (x - P)\right) + 0 \][/tex]
This is the desired result for the function.
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.