At Westonci.ca, we make it easy to get the answers you need from a community of informed and experienced contributors. Discover a wealth of knowledge from experts across different disciplines on our comprehensive Q&A platform. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
To determine the slope of the line passing through the two data points, we will use the slope formula and follow a step-by-step process.
First, label the coordinates of the two data points. Let:
- [tex]\( (x_1, y_1) \)[/tex] be the point when the temperature was first recorded.
- [tex]\( (x_2, y_2) \)[/tex] be the point when the temperature was recorded again later.
From the problem, we know:
- The first recorded temperature is [tex]\( -2^{\circ} F \)[/tex] at 8 a.m., which translates to the point [tex]\((8, -2)\)[/tex].
- The second recorded temperature is [tex]\( 4^{\circ} F \)[/tex] at 12:00 p.m., which translates to the point [tex]\((12, 4)\)[/tex].
The slope [tex]\( m \)[/tex] of a line passing through two points [tex]\((x_1, y_1)\)[/tex] and [tex]\((x_2, y_2)\)[/tex] is given by the formula:
[tex]\[ m = \frac{y_2 - y_1}{x_2 - x_1} \][/tex]
Plugging in the values from our coordinates:
[tex]\[ x_1 = 8, \; y_1 = -2, \; x_2 = 12, \; y_2 = 4 \][/tex]
Use the formula to find the slope:
[tex]\[ m = \frac{4 - (-2)}{12 - 8} \][/tex]
Simplify the numerator:
[tex]\[ 4 - (-2) = 4 + 2 = 6 \][/tex]
Simplify the denominator:
[tex]\[ 12 - 8 = 4 \][/tex]
So the slope [tex]\( m \)[/tex] is:
[tex]\[ m = \frac{6}{4} = 1.5 \][/tex]
Therefore, the slope of the line through these two data points is:
[tex]\[ \boxed{1.5} \][/tex]
First, label the coordinates of the two data points. Let:
- [tex]\( (x_1, y_1) \)[/tex] be the point when the temperature was first recorded.
- [tex]\( (x_2, y_2) \)[/tex] be the point when the temperature was recorded again later.
From the problem, we know:
- The first recorded temperature is [tex]\( -2^{\circ} F \)[/tex] at 8 a.m., which translates to the point [tex]\((8, -2)\)[/tex].
- The second recorded temperature is [tex]\( 4^{\circ} F \)[/tex] at 12:00 p.m., which translates to the point [tex]\((12, 4)\)[/tex].
The slope [tex]\( m \)[/tex] of a line passing through two points [tex]\((x_1, y_1)\)[/tex] and [tex]\((x_2, y_2)\)[/tex] is given by the formula:
[tex]\[ m = \frac{y_2 - y_1}{x_2 - x_1} \][/tex]
Plugging in the values from our coordinates:
[tex]\[ x_1 = 8, \; y_1 = -2, \; x_2 = 12, \; y_2 = 4 \][/tex]
Use the formula to find the slope:
[tex]\[ m = \frac{4 - (-2)}{12 - 8} \][/tex]
Simplify the numerator:
[tex]\[ 4 - (-2) = 4 + 2 = 6 \][/tex]
Simplify the denominator:
[tex]\[ 12 - 8 = 4 \][/tex]
So the slope [tex]\( m \)[/tex] is:
[tex]\[ m = \frac{6}{4} = 1.5 \][/tex]
Therefore, the slope of the line through these two data points is:
[tex]\[ \boxed{1.5} \][/tex]
Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.