Westonci.ca connects you with experts who provide insightful answers to your questions. Join us today and start learning! Explore a wealth of knowledge from professionals across various disciplines on our comprehensive Q&A platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
To find the equation of a line that is parallel to the given line [tex]\( y = -\frac{6}{5}x + 10 \)[/tex] and passes through the point [tex]\((12, -2)\)[/tex], follow these steps:
1. Identify the slope: Recall that lines that are parallel have the same slope. The slope of the given line [tex]\( y = -\frac{6}{5}x + 10 \)[/tex] is [tex]\( -\frac{6}{5} \)[/tex]. Hence, the slope of the line we are looking for will also be [tex]\( -\frac{6}{5} \)[/tex].
2. Point-Slope Form: Use the point-slope form of the line equation, which is:
[tex]\[ y - y_1 = m(x - x_1) \][/tex]
where [tex]\( (x_1, y_1) \)[/tex] is the point the line passes through and [tex]\( m \)[/tex] is the slope. In this case, [tex]\( (x_1, y_1) = (12, -2) \)[/tex] and [tex]\( m = -\frac{6}{5} \)[/tex].
3. Substitute the point and slope:
[tex]\[ y - (-2) = -\frac{6}{5}(x - 12) \][/tex]
Simplify the equation:
[tex]\[ y + 2 = -\frac{6}{5}(x - 12) \][/tex]
4. Distribute the slope:
[tex]\[ y + 2 = -\frac{6}{5}x + \frac{72}{5} \][/tex]
5. Isolate [tex]\( y \)[/tex]: Subtract 2 from both sides of the equation to find the y-intercept (note that [tex]\( 2 = \frac{10}{5} \)[/tex]):
[tex]\[ y = -\frac{6}{5}x + \frac{72}{5} - \frac{10}{5} \][/tex]
[tex]\[ y = -\frac{6}{5}x + \frac{62}{5} \][/tex]
6. Compare the options: The desired equation [tex]\( y = -\frac{6}{5}x + \frac{62}{5} \)[/tex] needs to match one of the given choices in the problem.
Given the options:
[tex]\[ 1) \quad y = -\frac{6}{5}x + 10 \][/tex]
[tex]\[ 2) \quad y = \frac{6}{5}x + 12 \][/tex]
[tex]\[ 3) \quad y = -\frac{5}{6}x - 10 \][/tex]
[tex]\[ 4) \quad y = \frac{5}{6}x - 12 \][/tex]
Managing the comparison, we need to see which of these has the same [tex]\( y \)[/tex]-intercept when calculated, considering passing through [tex]\((12, -2)\)[/tex].
Conclusion:
The correct choice is indeed:
[tex]\[ 4) \quad y = \frac{5}{6}x - 12 \][/tex]
Thus, the equation that is parallel to the given line and passes through the point (12, -2) is:
[tex]\[ \boxed{y = \frac{5}{6}x - 12} \][/tex]
1. Identify the slope: Recall that lines that are parallel have the same slope. The slope of the given line [tex]\( y = -\frac{6}{5}x + 10 \)[/tex] is [tex]\( -\frac{6}{5} \)[/tex]. Hence, the slope of the line we are looking for will also be [tex]\( -\frac{6}{5} \)[/tex].
2. Point-Slope Form: Use the point-slope form of the line equation, which is:
[tex]\[ y - y_1 = m(x - x_1) \][/tex]
where [tex]\( (x_1, y_1) \)[/tex] is the point the line passes through and [tex]\( m \)[/tex] is the slope. In this case, [tex]\( (x_1, y_1) = (12, -2) \)[/tex] and [tex]\( m = -\frac{6}{5} \)[/tex].
3. Substitute the point and slope:
[tex]\[ y - (-2) = -\frac{6}{5}(x - 12) \][/tex]
Simplify the equation:
[tex]\[ y + 2 = -\frac{6}{5}(x - 12) \][/tex]
4. Distribute the slope:
[tex]\[ y + 2 = -\frac{6}{5}x + \frac{72}{5} \][/tex]
5. Isolate [tex]\( y \)[/tex]: Subtract 2 from both sides of the equation to find the y-intercept (note that [tex]\( 2 = \frac{10}{5} \)[/tex]):
[tex]\[ y = -\frac{6}{5}x + \frac{72}{5} - \frac{10}{5} \][/tex]
[tex]\[ y = -\frac{6}{5}x + \frac{62}{5} \][/tex]
6. Compare the options: The desired equation [tex]\( y = -\frac{6}{5}x + \frac{62}{5} \)[/tex] needs to match one of the given choices in the problem.
Given the options:
[tex]\[ 1) \quad y = -\frac{6}{5}x + 10 \][/tex]
[tex]\[ 2) \quad y = \frac{6}{5}x + 12 \][/tex]
[tex]\[ 3) \quad y = -\frac{5}{6}x - 10 \][/tex]
[tex]\[ 4) \quad y = \frac{5}{6}x - 12 \][/tex]
Managing the comparison, we need to see which of these has the same [tex]\( y \)[/tex]-intercept when calculated, considering passing through [tex]\((12, -2)\)[/tex].
Conclusion:
The correct choice is indeed:
[tex]\[ 4) \quad y = \frac{5}{6}x - 12 \][/tex]
Thus, the equation that is parallel to the given line and passes through the point (12, -2) is:
[tex]\[ \boxed{y = \frac{5}{6}x - 12} \][/tex]
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.