Welcome to Westonci.ca, your go-to destination for finding answers to all your questions. Join our expert community today! Discover precise answers to your questions from a wide range of experts on our user-friendly Q&A platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
Let's analyze each expression step-by-step and compare them:
1. Expression: [tex]\( \frac{3^3}{3} \)[/tex]
[tex]\[ = 3^{3-1} \quad \text{(Subtract the exponents since the bases are the same)} = 3^2 \][/tex]
2. Expression: [tex]\( \frac{3^{-3}}{3^4} \)[/tex]
[tex]\[ = 3^{-3-4} \quad \text{(Subtract the exponents)} = 3^{-7} \][/tex]
3. Expression: [tex]\( \frac{3^7}{3^0} \)[/tex]
[tex]\[ = 3^{7-0} \quad \text{(Any number to the power of zero is 1, so 3^0 = 1)} = 3^7 \][/tex]
4. Expression: [tex]\( 3 \times 3^6 \)[/tex]
[tex]\[ = 3^1 \times 3^6 \quad \text{(Since 3 is the same as 3^1)} = 3^{1+6} \quad \text{(Add the exponents because the bases are the same)} = 3^7 \][/tex]
5. Expression: [tex]\( 3^3 \times 3^4 \)[/tex]
[tex]\[ = 3^{3+4} \quad \text{(Add the exponents because the bases are the same)} = 3^7 \][/tex]
Now, comparing each of these simplified forms:
- [tex]\( \frac{3^3}{3} = 3^2 \)[/tex]
- [tex]\( \frac{3^{-3}}{3^4} = 3^{-7} \)[/tex]
- [tex]\( \frac{3^7}{3^0} = 3^7 \)[/tex]
- [tex]\( 3 \times 3^6 = 3^7 \)[/tex]
- [tex]\( 3^3 \times 3^4 = 3^7 \)[/tex]
We observe that all the expressions except for the second one ([tex]\( \frac{3^{-3}}{3^4} \)[/tex]) are equal to [tex]\( 3^7 \)[/tex] or can be simplified to [tex]\( 3^7 \)[/tex].
Thus, the expression that is not equal to the others is the second one: [tex]\( \frac{3^{-3}}{3^4} \)[/tex].
Therefore, the expression that is not equal to the others is:
Option 2: [tex]\( \frac{3^{-3}}{3^4} \)[/tex]
Hence, the expression which is not equal to the others is the second one, or equivalently, the answer is:
### 2
1. Expression: [tex]\( \frac{3^3}{3} \)[/tex]
[tex]\[ = 3^{3-1} \quad \text{(Subtract the exponents since the bases are the same)} = 3^2 \][/tex]
2. Expression: [tex]\( \frac{3^{-3}}{3^4} \)[/tex]
[tex]\[ = 3^{-3-4} \quad \text{(Subtract the exponents)} = 3^{-7} \][/tex]
3. Expression: [tex]\( \frac{3^7}{3^0} \)[/tex]
[tex]\[ = 3^{7-0} \quad \text{(Any number to the power of zero is 1, so 3^0 = 1)} = 3^7 \][/tex]
4. Expression: [tex]\( 3 \times 3^6 \)[/tex]
[tex]\[ = 3^1 \times 3^6 \quad \text{(Since 3 is the same as 3^1)} = 3^{1+6} \quad \text{(Add the exponents because the bases are the same)} = 3^7 \][/tex]
5. Expression: [tex]\( 3^3 \times 3^4 \)[/tex]
[tex]\[ = 3^{3+4} \quad \text{(Add the exponents because the bases are the same)} = 3^7 \][/tex]
Now, comparing each of these simplified forms:
- [tex]\( \frac{3^3}{3} = 3^2 \)[/tex]
- [tex]\( \frac{3^{-3}}{3^4} = 3^{-7} \)[/tex]
- [tex]\( \frac{3^7}{3^0} = 3^7 \)[/tex]
- [tex]\( 3 \times 3^6 = 3^7 \)[/tex]
- [tex]\( 3^3 \times 3^4 = 3^7 \)[/tex]
We observe that all the expressions except for the second one ([tex]\( \frac{3^{-3}}{3^4} \)[/tex]) are equal to [tex]\( 3^7 \)[/tex] or can be simplified to [tex]\( 3^7 \)[/tex].
Thus, the expression that is not equal to the others is the second one: [tex]\( \frac{3^{-3}}{3^4} \)[/tex].
Therefore, the expression that is not equal to the others is:
Option 2: [tex]\( \frac{3^{-3}}{3^4} \)[/tex]
Hence, the expression which is not equal to the others is the second one, or equivalently, the answer is:
### 2
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.