Westonci.ca is your trusted source for finding answers to all your questions. Ask, explore, and learn with our expert community. Find reliable answers to your questions from a wide community of knowledgeable experts on our user-friendly Q&A platform. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
To determine the domain of the function [tex]\( f(x) = \frac{3x}{4x^2 - 4} \)[/tex], we need to identify the values of [tex]\( x \)[/tex] for which the function is undefined. The function is undefined wherever its denominator is zero because division by zero is undefined.
Let's examine the denominator of the function:
[tex]\[ 4x^2 - 4 \][/tex]
First, we set the denominator equal to zero and solve for [tex]\( x \)[/tex]:
[tex]\[ 4x^2 - 4 = 0 \][/tex]
Next, we can factor out the common term:
[tex]\[ 4(x^2 - 1) = 0 \][/tex]
We recognize that [tex]\( x^2 - 1 \)[/tex] is a difference of squares:
[tex]\[ 4(x - 1)(x + 1) = 0 \][/tex]
Setting each factor equal to zero gives us:
[tex]\[ x - 1 = 0 \][/tex]
[tex]\[ x = 1 \][/tex]
[tex]\[ x + 1 = 0 \][/tex]
[tex]\[ x = -1 \][/tex]
So, the function [tex]\( f(x) = \frac{3x}{4x^2 - 4} \)[/tex] is undefined at [tex]\( x = 1 \)[/tex] and [tex]\( x = -1 \)[/tex].
This means the domain of the function is all real numbers except [tex]\( x = 1 \)[/tex] and [tex]\( x = -1 \)[/tex].
Therefore, the correct statement describing the domain of the function [tex]\( f(x) \)[/tex] is:
All real numbers except [tex]\( x = -1 \)[/tex] and [tex]\( x = 1 \)[/tex].
Let's examine the denominator of the function:
[tex]\[ 4x^2 - 4 \][/tex]
First, we set the denominator equal to zero and solve for [tex]\( x \)[/tex]:
[tex]\[ 4x^2 - 4 = 0 \][/tex]
Next, we can factor out the common term:
[tex]\[ 4(x^2 - 1) = 0 \][/tex]
We recognize that [tex]\( x^2 - 1 \)[/tex] is a difference of squares:
[tex]\[ 4(x - 1)(x + 1) = 0 \][/tex]
Setting each factor equal to zero gives us:
[tex]\[ x - 1 = 0 \][/tex]
[tex]\[ x = 1 \][/tex]
[tex]\[ x + 1 = 0 \][/tex]
[tex]\[ x = -1 \][/tex]
So, the function [tex]\( f(x) = \frac{3x}{4x^2 - 4} \)[/tex] is undefined at [tex]\( x = 1 \)[/tex] and [tex]\( x = -1 \)[/tex].
This means the domain of the function is all real numbers except [tex]\( x = 1 \)[/tex] and [tex]\( x = -1 \)[/tex].
Therefore, the correct statement describing the domain of the function [tex]\( f(x) \)[/tex] is:
All real numbers except [tex]\( x = -1 \)[/tex] and [tex]\( x = 1 \)[/tex].
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.