Looking for reliable answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Experience the convenience of getting accurate answers to your questions from a dedicated community of professionals. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
To determine Saturn's distance from the sun, denoted as [tex]\( a \)[/tex], given its orbital period [tex]\( P \)[/tex] of 29.5 years, we can use the relation:
[tex]\[ P = a^{\frac{3}{2}} \][/tex]
We need to solve for [tex]\( a \)[/tex] when [tex]\( P = 29.5 \)[/tex]. Here are the steps to find [tex]\( a \)[/tex]:
1. Formula Setup: We start with the equation:
[tex]\[ 29.5 = a^{\frac{3}{2}} \][/tex]
2. Isolate [tex]\( a \)[/tex]: To isolate [tex]\( a \)[/tex], we need to undo the exponent [tex]\(\frac{3}{2}\)[/tex]. To do this, we raise both sides of the equation to the power of [tex]\(\frac{2}{3}\)[/tex]. This is because:
[tex]\[ \left(a^{\frac{3}{2}}\right)^{\frac{2}{3}} = a^{\left(\frac{3}{2} \cdot \frac{2}{3}\right)} = a \][/tex]
So, applying this to both sides of the equation:
[tex]\[ \left(29.5\right)^{\frac{2}{3}} = a \][/tex]
3. Calculate [tex]\( a \)[/tex]: Given the true result, [tex]\(\left(29.5\right)^{\frac{2}{3}}\)[/tex] is approximately equal to 9.547. Thus:
[tex]\[ a \approx 9.547 \][/tex]
4. Round or approximate value: Generally, distances in astronomy are given to a few significant digits. Therefore, rounding 9.547 to the nearest value among the choices provided, we get approximately:
[tex]\[ a \approx 9.5 \text{ AU} \][/tex]
Therefore, Saturn's distance from the sun is approximately 9.5 AU.
The correct option is:
- [tex]\( \boxed{9.5 \text{ AU}} \)[/tex]
[tex]\[ P = a^{\frac{3}{2}} \][/tex]
We need to solve for [tex]\( a \)[/tex] when [tex]\( P = 29.5 \)[/tex]. Here are the steps to find [tex]\( a \)[/tex]:
1. Formula Setup: We start with the equation:
[tex]\[ 29.5 = a^{\frac{3}{2}} \][/tex]
2. Isolate [tex]\( a \)[/tex]: To isolate [tex]\( a \)[/tex], we need to undo the exponent [tex]\(\frac{3}{2}\)[/tex]. To do this, we raise both sides of the equation to the power of [tex]\(\frac{2}{3}\)[/tex]. This is because:
[tex]\[ \left(a^{\frac{3}{2}}\right)^{\frac{2}{3}} = a^{\left(\frac{3}{2} \cdot \frac{2}{3}\right)} = a \][/tex]
So, applying this to both sides of the equation:
[tex]\[ \left(29.5\right)^{\frac{2}{3}} = a \][/tex]
3. Calculate [tex]\( a \)[/tex]: Given the true result, [tex]\(\left(29.5\right)^{\frac{2}{3}}\)[/tex] is approximately equal to 9.547. Thus:
[tex]\[ a \approx 9.547 \][/tex]
4. Round or approximate value: Generally, distances in astronomy are given to a few significant digits. Therefore, rounding 9.547 to the nearest value among the choices provided, we get approximately:
[tex]\[ a \approx 9.5 \text{ AU} \][/tex]
Therefore, Saturn's distance from the sun is approximately 9.5 AU.
The correct option is:
- [tex]\( \boxed{9.5 \text{ AU}} \)[/tex]
We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.