At Westonci.ca, we connect you with experts who provide detailed answers to your most pressing questions. Start exploring now! Get quick and reliable solutions to your questions from a community of experienced experts on our platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To determine the possible values for [tex]\(n\)[/tex] in the context of a triangle with side lengths [tex]\(2x + 2\)[/tex] feet, [tex]\(x + 3\)[/tex] feet, and [tex]\(n\)[/tex] feet, we need to apply the triangle inequality theorem. The theorem states that the sum of the lengths of any two sides of a triangle must be greater than the length of the third side. Therefore, we have to satisfy the following three inequalities:
1. [tex]\( (2x + 2) + (x + 3) > n \)[/tex]
2. [tex]\( (2x + 2) + n > (x + 3) \)[/tex]
3. [tex]\( (x + 3) + n > (2x + 2) \)[/tex]
First, let's simplify each inequality step by step.
### Inequality 1:
[tex]\[ (2x + 2) + (x + 3) > n \][/tex]
[tex]\[ 2x + x + 2 + 3 > n \][/tex]
[tex]\[ 3x + 5 > n \][/tex]
[tex]\[ n < 3x + 5 \][/tex]
### Inequality 2:
[tex]\[ (2x + 2) + n > (x + 3) \][/tex]
[tex]\[ 2x + 2 + n > x + 3 \][/tex]
[tex]\[ 2x + n + 2 > x + 3 \][/tex]
Subtract [tex]\(x\)[/tex] from both sides:
[tex]\[ x + n + 2 > 3 \][/tex]
Subtract 2 from both sides:
[tex]\[ n > x + 1 \][/tex]
### Inequality 3:
[tex]\[ (x + 3) + n > (2x + 2) \][/tex]
[tex]\[ x + 3 + n > 2x + 2 \][/tex]
Subtract [tex]\(2x\)[/tex] from both sides:
[tex]\[ x + n + 3 > 2 \][/tex]
[tex]\[ n + 3 > x + 2 \][/tex]
Subtract 3 from both sides:
[tex]\[ n > x - 1 \][/tex]
Now, let’s combine the results of the inequalities:
- From Inequality 1: [tex]\(n < 3x + 5\)[/tex]
- From Inequality 2: [tex]\(n > x + 1\)[/tex]
- From Inequality 3: [tex]\(n > x - 1\)[/tex]
We need to take the most restrictive lower bound and the least restrictive upper bound:
- The lower bound is [tex]\(n > x - 1\)[/tex]
- The upper bound is [tex]\(n < 3x + 5\)[/tex]
Therefore, the expression representing the possible values of [tex]\(n\)[/tex] in feet is:
[tex]\[ x - 1 < n < 3x + 5 \][/tex]
So, the correct answer is:
[tex]\[ x - 1 < n < 3x + 5 \][/tex]
1. [tex]\( (2x + 2) + (x + 3) > n \)[/tex]
2. [tex]\( (2x + 2) + n > (x + 3) \)[/tex]
3. [tex]\( (x + 3) + n > (2x + 2) \)[/tex]
First, let's simplify each inequality step by step.
### Inequality 1:
[tex]\[ (2x + 2) + (x + 3) > n \][/tex]
[tex]\[ 2x + x + 2 + 3 > n \][/tex]
[tex]\[ 3x + 5 > n \][/tex]
[tex]\[ n < 3x + 5 \][/tex]
### Inequality 2:
[tex]\[ (2x + 2) + n > (x + 3) \][/tex]
[tex]\[ 2x + 2 + n > x + 3 \][/tex]
[tex]\[ 2x + n + 2 > x + 3 \][/tex]
Subtract [tex]\(x\)[/tex] from both sides:
[tex]\[ x + n + 2 > 3 \][/tex]
Subtract 2 from both sides:
[tex]\[ n > x + 1 \][/tex]
### Inequality 3:
[tex]\[ (x + 3) + n > (2x + 2) \][/tex]
[tex]\[ x + 3 + n > 2x + 2 \][/tex]
Subtract [tex]\(2x\)[/tex] from both sides:
[tex]\[ x + n + 3 > 2 \][/tex]
[tex]\[ n + 3 > x + 2 \][/tex]
Subtract 3 from both sides:
[tex]\[ n > x - 1 \][/tex]
Now, let’s combine the results of the inequalities:
- From Inequality 1: [tex]\(n < 3x + 5\)[/tex]
- From Inequality 2: [tex]\(n > x + 1\)[/tex]
- From Inequality 3: [tex]\(n > x - 1\)[/tex]
We need to take the most restrictive lower bound and the least restrictive upper bound:
- The lower bound is [tex]\(n > x - 1\)[/tex]
- The upper bound is [tex]\(n < 3x + 5\)[/tex]
Therefore, the expression representing the possible values of [tex]\(n\)[/tex] in feet is:
[tex]\[ x - 1 < n < 3x + 5 \][/tex]
So, the correct answer is:
[tex]\[ x - 1 < n < 3x + 5 \][/tex]
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.