Find the best solutions to your questions at Westonci.ca, the premier Q&A platform with a community of knowledgeable experts. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
The given problem is to find the solution to the quadratic equation [tex]\(x^2 + 14x + 45 = 0\)[/tex] and identify any mistakes made in the steps provided by the student.
Let's go through each step to determine where the mistake occurred:
1. Step 1: Factoring the polynomial
[tex]\[ x^2 + 14x + 45 = (x + 5)(x + 9) \][/tex]
To verify this factoring, we expand [tex]\((x + 5)(x + 9)\)[/tex]:
[tex]\[ (x + 5)(x + 9) = x^2 + 9x + 5x + 45 = x^2 + 14x + 45 \][/tex]
Factoring is correctly done in Step 1.
2. Step 2: Setting each factor to zero
The student sets each factor to zero to find the roots:
[tex]\[ x + 5 = 0 \quad \text{or} \quad x + 9 = 0 \][/tex]
It should be [tex]\(\textbf{x + 5 = 0}\)[/tex] or [tex]\(\textbf{x + 9 = 0}\)[/tex], not [tex]\(x + 5 = 0\)[/tex] or [tex]\(x - 9 = 0\)[/tex] as stated in the student's step. There is no equation [tex]\(x - 9 = 0\)[/tex] from the given factorization. Thus, the error is in Step 2.
3. Step 3: Solving the equations
If using [tex]\(x + 5 = 0\)[/tex] and [tex]\(x + 9 = 0\)[/tex]:
[tex]\[ x + 5 = 0 \implies x = -5 \][/tex]
[tex]\[ x + 9 = 0 \implies x = -9 \][/tex]
So, the correct solutions are [tex]\(x = -5\)[/tex] or [tex]\(x = -9\)[/tex].
Since the error is in step 2 where there is a mention of [tex]\(x - 9 = 0\)[/tex] instead of [tex]\(x + 9 = 0\)[/tex], the mistake lies here.
Therefore, the correct answer is:
[tex]\[ \boxed{D. \text{in Step 2}} \][/tex]
Let's go through each step to determine where the mistake occurred:
1. Step 1: Factoring the polynomial
[tex]\[ x^2 + 14x + 45 = (x + 5)(x + 9) \][/tex]
To verify this factoring, we expand [tex]\((x + 5)(x + 9)\)[/tex]:
[tex]\[ (x + 5)(x + 9) = x^2 + 9x + 5x + 45 = x^2 + 14x + 45 \][/tex]
Factoring is correctly done in Step 1.
2. Step 2: Setting each factor to zero
The student sets each factor to zero to find the roots:
[tex]\[ x + 5 = 0 \quad \text{or} \quad x + 9 = 0 \][/tex]
It should be [tex]\(\textbf{x + 5 = 0}\)[/tex] or [tex]\(\textbf{x + 9 = 0}\)[/tex], not [tex]\(x + 5 = 0\)[/tex] or [tex]\(x - 9 = 0\)[/tex] as stated in the student's step. There is no equation [tex]\(x - 9 = 0\)[/tex] from the given factorization. Thus, the error is in Step 2.
3. Step 3: Solving the equations
If using [tex]\(x + 5 = 0\)[/tex] and [tex]\(x + 9 = 0\)[/tex]:
[tex]\[ x + 5 = 0 \implies x = -5 \][/tex]
[tex]\[ x + 9 = 0 \implies x = -9 \][/tex]
So, the correct solutions are [tex]\(x = -5\)[/tex] or [tex]\(x = -9\)[/tex].
Since the error is in step 2 where there is a mention of [tex]\(x - 9 = 0\)[/tex] instead of [tex]\(x + 9 = 0\)[/tex], the mistake lies here.
Therefore, the correct answer is:
[tex]\[ \boxed{D. \text{in Step 2}} \][/tex]
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.