Find the best solutions to your questions at Westonci.ca, the premier Q&A platform with a community of knowledgeable experts. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To find the equation of the line that passes through the points [tex]\((-2, 6)\)[/tex] and [tex]\((1, 1)\)[/tex], follow these steps:
1. Identify coordinates of the points: The coordinates given are [tex]\( (-2, 6) \)[/tex] and [tex]\( (1, 1) \)[/tex].
2. Calculate the slope:
The slope [tex]\( m \)[/tex] of the line that goes through [tex]\((x_1, y_1)\)[/tex] and [tex]\((x_2, y_2)\)[/tex] is given by the formula:
[tex]\[ m = \frac{y_2 - y_1}{x_2 - x_1} \][/tex]
Substituting the coordinates:
[tex]\[ m = \frac{1 - 6}{1 - (-2)} = \frac{1 - 6}{1 + 2} = \frac{-5}{3} \][/tex]
3. Use the point-slope form of the equation of a line:
The point-slope form of a line's equation is:
[tex]\[ y - y_1 = m(x - x_1) \][/tex]
Given one of the points [tex]\((-2, 6)\)[/tex] and the slope [tex]\( m = -\frac{5}{3} \)[/tex], plug these values into the formula:
[tex]\[ y - 6 = -\frac{5}{3}(x - (-2)) \][/tex]
Simplify the equation inside the parentheses:
[tex]\[ y - 6 = -\frac{5}{3}(x + 2) \][/tex]
So the complete point-slope equation of the line through [tex]\((-2, 6)\)[/tex] and [tex]\((1, 1)\)[/tex] is:
[tex]\[ y - 6 = -\frac{5}{3}(x + 2) \][/tex]
1. Identify coordinates of the points: The coordinates given are [tex]\( (-2, 6) \)[/tex] and [tex]\( (1, 1) \)[/tex].
2. Calculate the slope:
The slope [tex]\( m \)[/tex] of the line that goes through [tex]\((x_1, y_1)\)[/tex] and [tex]\((x_2, y_2)\)[/tex] is given by the formula:
[tex]\[ m = \frac{y_2 - y_1}{x_2 - x_1} \][/tex]
Substituting the coordinates:
[tex]\[ m = \frac{1 - 6}{1 - (-2)} = \frac{1 - 6}{1 + 2} = \frac{-5}{3} \][/tex]
3. Use the point-slope form of the equation of a line:
The point-slope form of a line's equation is:
[tex]\[ y - y_1 = m(x - x_1) \][/tex]
Given one of the points [tex]\((-2, 6)\)[/tex] and the slope [tex]\( m = -\frac{5}{3} \)[/tex], plug these values into the formula:
[tex]\[ y - 6 = -\frac{5}{3}(x - (-2)) \][/tex]
Simplify the equation inside the parentheses:
[tex]\[ y - 6 = -\frac{5}{3}(x + 2) \][/tex]
So the complete point-slope equation of the line through [tex]\((-2, 6)\)[/tex] and [tex]\((1, 1)\)[/tex] is:
[tex]\[ y - 6 = -\frac{5}{3}(x + 2) \][/tex]
Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.