Get reliable answers to your questions at Westonci.ca, where our knowledgeable community is always ready to help. Discover precise answers to your questions from a wide range of experts on our user-friendly Q&A platform. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
To determine the domain of [tex]\(\left(\frac{f}{g}\right)(x)\)[/tex] where [tex]\(f(x) = x^2 - 25\)[/tex] and [tex]\(g(x) = x - 5\)[/tex], we need to understand when the function [tex]\(\left(\frac{f}{g}\right)(x)\)[/tex] is defined.
A rational function [tex]\(\left(\frac{f}{g}\right)(x)\)[/tex] is defined whenever the denominator [tex]\(g(x)\)[/tex] is not zero. So we first need to identify the values of [tex]\(x\)[/tex] that make [tex]\(g(x) = 0\)[/tex].
Given:
[tex]\[ g(x) = x - 5 \][/tex]
We solve for [tex]\(x\)[/tex] when [tex]\(g(x) = 0\)[/tex]:
[tex]\[ x - 5 = 0 \][/tex]
[tex]\[ x = 5 \][/tex]
Thus, [tex]\(g(x) = 0\)[/tex] when [tex]\(x = 5\)[/tex]. This means that [tex]\(\left(\frac{f}{g}\right)(x)\)[/tex] is undefined when [tex]\(x = 5\)[/tex].
Next, we check if there are any other restrictions on [tex]\(x\)[/tex] that could make the function [tex]\(\left(\frac{f}{g}\right)(x)\)[/tex] undefined. Specifically, we consider any values of [tex]\(x\)[/tex] that might make [tex]\(f(x)\)[/tex] or [tex]\(g(x)\)[/tex] undefined. However, since both [tex]\(f(x) = x^2 - 25\)[/tex] and [tex]\(g(x) = x - 5\)[/tex] are polynomials, they are defined for all real [tex]\(x\)[/tex].
Consequently, the only restriction on the domain of [tex]\(\left(\frac{f}{g}\right)(x)\)[/tex] comes from the denominator being zero, which happens when [tex]\(x = 5\)[/tex].
Therefore, the domain of [tex]\(\left(\frac{f}{g}\right)(x)\)[/tex] is:
[tex]\[ \text{all real values of } x \text{ except } x=5 \][/tex]
So the correct answer is:
[tex]\[ \boxed{\text{all real values of } x \text{ except } x=5} \][/tex]
A rational function [tex]\(\left(\frac{f}{g}\right)(x)\)[/tex] is defined whenever the denominator [tex]\(g(x)\)[/tex] is not zero. So we first need to identify the values of [tex]\(x\)[/tex] that make [tex]\(g(x) = 0\)[/tex].
Given:
[tex]\[ g(x) = x - 5 \][/tex]
We solve for [tex]\(x\)[/tex] when [tex]\(g(x) = 0\)[/tex]:
[tex]\[ x - 5 = 0 \][/tex]
[tex]\[ x = 5 \][/tex]
Thus, [tex]\(g(x) = 0\)[/tex] when [tex]\(x = 5\)[/tex]. This means that [tex]\(\left(\frac{f}{g}\right)(x)\)[/tex] is undefined when [tex]\(x = 5\)[/tex].
Next, we check if there are any other restrictions on [tex]\(x\)[/tex] that could make the function [tex]\(\left(\frac{f}{g}\right)(x)\)[/tex] undefined. Specifically, we consider any values of [tex]\(x\)[/tex] that might make [tex]\(f(x)\)[/tex] or [tex]\(g(x)\)[/tex] undefined. However, since both [tex]\(f(x) = x^2 - 25\)[/tex] and [tex]\(g(x) = x - 5\)[/tex] are polynomials, they are defined for all real [tex]\(x\)[/tex].
Consequently, the only restriction on the domain of [tex]\(\left(\frac{f}{g}\right)(x)\)[/tex] comes from the denominator being zero, which happens when [tex]\(x = 5\)[/tex].
Therefore, the domain of [tex]\(\left(\frac{f}{g}\right)(x)\)[/tex] is:
[tex]\[ \text{all real values of } x \text{ except } x=5 \][/tex]
So the correct answer is:
[tex]\[ \boxed{\text{all real values of } x \text{ except } x=5} \][/tex]
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.