Westonci.ca is the ultimate Q&A platform, offering detailed and reliable answers from a knowledgeable community. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
To solve the problem of finding the probability that a randomly selected letter from the English alphabet comes after the letter [tex]$D$[/tex], let's go through the process step-by-step.
1. Total Number of Letters: The English alphabet contains a total of 26 letters.
2. Identifying Letters After [tex]$D$[/tex]:
- The letter [tex]$D$[/tex] is the 4th letter in the alphabet.
- The letters that come after [tex]$D$[/tex] are [tex]$E, F, G, ..., Z$[/tex].
- Thus, the letters after [tex]$D$[/tex] start from position 5 onwards.
3. Counting the Letters After [tex]$D$[/tex]:
- If we subtract the 4 letters (A, B, C, D) that come before and including [tex]$D$[/tex] from the total number of letters, we get the number of letters after [tex]$D$[/tex].
- So, the number of letters after [tex]$D$[/tex] is [tex]\(26 - 4 = 22\)[/tex].
4. Calculating the Probability:
- Probability is defined as the number of favorable outcomes divided by the total number of possible outcomes.
- Here, the favorable outcomes are the 22 letters that come after [tex]$D$[/tex].
- Therefore, the probability is [tex]\(\frac{22}{26}\)[/tex].
5. Simplifying the Fraction:
- [tex]\(\frac{22}{26}\)[/tex] can be simplified by dividing both the numerator and the denominator by their greatest common divisor, which is 2.
- Simplifying [tex]\(\frac{22}{26}\)[/tex] gives [tex]\(\frac{11}{13}\)[/tex].
Therefore, the probability that a randomly selected letter from the English alphabet comes after [tex]$D$[/tex] is [tex]\(\frac{11}{13}\)[/tex].
So, the correct answer is:
B. [tex]\(\frac{11}{13}\)[/tex]
1. Total Number of Letters: The English alphabet contains a total of 26 letters.
2. Identifying Letters After [tex]$D$[/tex]:
- The letter [tex]$D$[/tex] is the 4th letter in the alphabet.
- The letters that come after [tex]$D$[/tex] are [tex]$E, F, G, ..., Z$[/tex].
- Thus, the letters after [tex]$D$[/tex] start from position 5 onwards.
3. Counting the Letters After [tex]$D$[/tex]:
- If we subtract the 4 letters (A, B, C, D) that come before and including [tex]$D$[/tex] from the total number of letters, we get the number of letters after [tex]$D$[/tex].
- So, the number of letters after [tex]$D$[/tex] is [tex]\(26 - 4 = 22\)[/tex].
4. Calculating the Probability:
- Probability is defined as the number of favorable outcomes divided by the total number of possible outcomes.
- Here, the favorable outcomes are the 22 letters that come after [tex]$D$[/tex].
- Therefore, the probability is [tex]\(\frac{22}{26}\)[/tex].
5. Simplifying the Fraction:
- [tex]\(\frac{22}{26}\)[/tex] can be simplified by dividing both the numerator and the denominator by their greatest common divisor, which is 2.
- Simplifying [tex]\(\frac{22}{26}\)[/tex] gives [tex]\(\frac{11}{13}\)[/tex].
Therefore, the probability that a randomly selected letter from the English alphabet comes after [tex]$D$[/tex] is [tex]\(\frac{11}{13}\)[/tex].
So, the correct answer is:
B. [tex]\(\frac{11}{13}\)[/tex]
Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.