Welcome to Westonci.ca, where you can find answers to all your questions from a community of experienced professionals. Discover in-depth solutions to your questions from a wide range of experts on our user-friendly Q&A platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
To determine the value of [tex]\(w\)[/tex] given that one angle of a regular decagon measures [tex]\((8w + 17)^\circ\)[/tex], let's follow the step-by-step process:
1. Calculate the internal angle of a regular decagon:
- A decagon has 10 sides.
- The formula for the internal angle of a regular [tex]\(n\)[/tex]-sided polygon is [tex]\(\frac{(n - 2) \times 180}{n}\)[/tex].
2. Apply the formula to the decagon:
[tex]\[ \text{Internal angle} = \frac{(10 - 2) \times 180}{10} = \frac{8 \times 180}{10} = \frac{1440}{10} = 144^\circ \][/tex]
3. Set up the equation with the given internal angle:
- The internal angle [tex]\(144^\circ\)[/tex] is given by [tex]\((8w + 17)^\circ\)[/tex].
- We set up the equation:
[tex]\[ 8w + 17 = 144 \][/tex]
4. Solve for [tex]\(w\)[/tex]:
[tex]\[ 8w + 17 = 144 \][/tex]
- Subtract 17 from both sides:
[tex]\[ 8w = 144 - 17 \][/tex]
[tex]\[ 8w = 127 \][/tex]
- Divide both sides by 8 to solve for [tex]\(w\)[/tex]:
[tex]\[ w = \frac{127}{8} \approx 15.875 \][/tex]
5. Round to the nearest whole number:
[tex]\[ 15.875 \approx 16 \][/tex]
Therefore, the value of [tex]\(w\)[/tex] that makes one angle of a regular decagon measure [tex]\((8w + 17)^\circ\)[/tex] is [tex]\( \boxed{16} \)[/tex].
1. Calculate the internal angle of a regular decagon:
- A decagon has 10 sides.
- The formula for the internal angle of a regular [tex]\(n\)[/tex]-sided polygon is [tex]\(\frac{(n - 2) \times 180}{n}\)[/tex].
2. Apply the formula to the decagon:
[tex]\[ \text{Internal angle} = \frac{(10 - 2) \times 180}{10} = \frac{8 \times 180}{10} = \frac{1440}{10} = 144^\circ \][/tex]
3. Set up the equation with the given internal angle:
- The internal angle [tex]\(144^\circ\)[/tex] is given by [tex]\((8w + 17)^\circ\)[/tex].
- We set up the equation:
[tex]\[ 8w + 17 = 144 \][/tex]
4. Solve for [tex]\(w\)[/tex]:
[tex]\[ 8w + 17 = 144 \][/tex]
- Subtract 17 from both sides:
[tex]\[ 8w = 144 - 17 \][/tex]
[tex]\[ 8w = 127 \][/tex]
- Divide both sides by 8 to solve for [tex]\(w\)[/tex]:
[tex]\[ w = \frac{127}{8} \approx 15.875 \][/tex]
5. Round to the nearest whole number:
[tex]\[ 15.875 \approx 16 \][/tex]
Therefore, the value of [tex]\(w\)[/tex] that makes one angle of a regular decagon measure [tex]\((8w + 17)^\circ\)[/tex] is [tex]\( \boxed{16} \)[/tex].
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.