At Westonci.ca, we make it easy for you to get the answers you need from a community of knowledgeable individuals. Discover comprehensive answers to your questions from knowledgeable professionals on our user-friendly platform. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
To determine the domain of the given function
[tex]\[ f(x) = \sin \left(\sqrt{1-x^2}\right) + \sqrt{x+2} + \frac{1}{\log_{10}(x+1)}, \][/tex]
we need to ensure that each term within the function is well-defined for values of [tex]\( x \)[/tex].
### 1. Analyze [tex]\(\sin \left(\sqrt{1-x^2}\right)\)[/tex]:
The argument of the sine function is [tex]\(\sqrt{1-x^2}\)[/tex]. For the square root function to be defined, the expression inside the square root must be non-negative:
[tex]\[ 1 - x^2 \geq 0. \][/tex]
Solving this inequality:
[tex]\[ 1 - x^2 \geq 0 \implies x^2 \leq 1 \implies -1 \leq x \leq 1. \][/tex]
This provides the first constraint: [tex]\( x \in [-1, 1] \)[/tex].
### 2. Analyze [tex]\(\sqrt{x+2}\)[/tex]:
For the square root function to be defined, the argument must be non-negative:
[tex]\[ x + 2 \geq 0 \implies x \geq -2. \][/tex]
This provides the second constraint: [tex]\( x \in [-2, \infty) \)[/tex].
### 3. Analyze [tex]\(\frac{1}{\log_{10}(x+1)}\)[/tex]:
For this term to be defined and non-zero, the logarithm function in the denominator must be non-zero and its argument must be greater than zero (since the logarithm of a non-positive number is undefined and negative logarithms are not allowed as denominators):
[tex]\[ x + 1 > 0 \implies x > -1. \][/tex]
Additionally, we need to ensure that [tex]\(\log_{10}(x+1) \neq 0\)[/tex]:
[tex]\[ \log_{10}(x+1) = 0 \implies x+1 = 10^0 \implies x+1 = 1 \implies x = 0. \][/tex]
Hence, [tex]\( x \neq 0 \)[/tex].
Combining these constraints:
- From [tex]\(\sin \left(\sqrt{1-x^2}\right)\)[/tex]: [tex]\( x \in [-1, 1] \)[/tex].
- From [tex]\(\sqrt{x+2}\)[/tex]: [tex]\( x \geq -2 \)[/tex].
- From [tex]\(\frac{1}{\log_{10}(x+1)}\)[/tex]: [tex]\( x > -1\)[/tex] and [tex]\( x \neq 0 \)[/tex].
### 4. Combine all conditions:
To combine these conditions, we need the intersection of:
- [tex]\(x \in [-1, 1]\)[/tex]
- [tex]\(x \geq -1\)[/tex]
- [tex]\(x \neq 0\)[/tex]
The intersection of [tex]\(x \in [-1, 1]\)[/tex] and [tex]\(x \geq -1\)[/tex] is [tex]\(x \in [-1, 1]\)[/tex].
Excluding [tex]\(x = 0\)[/tex] from this interval gives:
[tex]\[ x \in [-1, 1] \setminus \{0\} = \{-1 \leq x < 0\} \cup \{0 < x \leq 1\}.\][/tex]
Therefore, the domain of the function [tex]\( f(x) \)[/tex] is:
[tex]\[ \boxed{[-1, 0) \cup (0, 1]}. \][/tex]
[tex]\[ f(x) = \sin \left(\sqrt{1-x^2}\right) + \sqrt{x+2} + \frac{1}{\log_{10}(x+1)}, \][/tex]
we need to ensure that each term within the function is well-defined for values of [tex]\( x \)[/tex].
### 1. Analyze [tex]\(\sin \left(\sqrt{1-x^2}\right)\)[/tex]:
The argument of the sine function is [tex]\(\sqrt{1-x^2}\)[/tex]. For the square root function to be defined, the expression inside the square root must be non-negative:
[tex]\[ 1 - x^2 \geq 0. \][/tex]
Solving this inequality:
[tex]\[ 1 - x^2 \geq 0 \implies x^2 \leq 1 \implies -1 \leq x \leq 1. \][/tex]
This provides the first constraint: [tex]\( x \in [-1, 1] \)[/tex].
### 2. Analyze [tex]\(\sqrt{x+2}\)[/tex]:
For the square root function to be defined, the argument must be non-negative:
[tex]\[ x + 2 \geq 0 \implies x \geq -2. \][/tex]
This provides the second constraint: [tex]\( x \in [-2, \infty) \)[/tex].
### 3. Analyze [tex]\(\frac{1}{\log_{10}(x+1)}\)[/tex]:
For this term to be defined and non-zero, the logarithm function in the denominator must be non-zero and its argument must be greater than zero (since the logarithm of a non-positive number is undefined and negative logarithms are not allowed as denominators):
[tex]\[ x + 1 > 0 \implies x > -1. \][/tex]
Additionally, we need to ensure that [tex]\(\log_{10}(x+1) \neq 0\)[/tex]:
[tex]\[ \log_{10}(x+1) = 0 \implies x+1 = 10^0 \implies x+1 = 1 \implies x = 0. \][/tex]
Hence, [tex]\( x \neq 0 \)[/tex].
Combining these constraints:
- From [tex]\(\sin \left(\sqrt{1-x^2}\right)\)[/tex]: [tex]\( x \in [-1, 1] \)[/tex].
- From [tex]\(\sqrt{x+2}\)[/tex]: [tex]\( x \geq -2 \)[/tex].
- From [tex]\(\frac{1}{\log_{10}(x+1)}\)[/tex]: [tex]\( x > -1\)[/tex] and [tex]\( x \neq 0 \)[/tex].
### 4. Combine all conditions:
To combine these conditions, we need the intersection of:
- [tex]\(x \in [-1, 1]\)[/tex]
- [tex]\(x \geq -1\)[/tex]
- [tex]\(x \neq 0\)[/tex]
The intersection of [tex]\(x \in [-1, 1]\)[/tex] and [tex]\(x \geq -1\)[/tex] is [tex]\(x \in [-1, 1]\)[/tex].
Excluding [tex]\(x = 0\)[/tex] from this interval gives:
[tex]\[ x \in [-1, 1] \setminus \{0\} = \{-1 \leq x < 0\} \cup \{0 < x \leq 1\}.\][/tex]
Therefore, the domain of the function [tex]\( f(x) \)[/tex] is:
[tex]\[ \boxed{[-1, 0) \cup (0, 1]}. \][/tex]
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.