Discover the answers you need at Westonci.ca, where experts provide clear and concise information on various topics. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.

For the line segment joining the points [tex]\( A(-1, 5) \)[/tex] and [tex]\( B(4, -3) \)[/tex], calculate:

A. The length of the line segment.
B. The midpoint of the line segment.
C. The slope of the line segment.


Sagot :

Sure, let's solve the given problem step-by-step.

### Given Points:
[tex]\( A(-1, 5) \)[/tex] and [tex]\( B(4, -3) \)[/tex]

### 1. Distance Between Two Points
To find the distance [tex]\( d \)[/tex] between two points [tex]\((x_1, y_1)\)[/tex] and [tex]\((x_2, y_2)\)[/tex], we use the distance formula:
[tex]\[ d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \][/tex]

Plugging in the coordinates of points [tex]\( A \)[/tex] and [tex]\( B \)[/tex]:
[tex]\[ d = \sqrt{(4 - (-1))^2 + (-3 - 5)^2} \][/tex]
[tex]\[ d = \sqrt{(4 + 1)^2 + (-3 - 5)^2} \][/tex]
[tex]\[ d = \sqrt{5^2 + (-8)^2} \][/tex]
[tex]\[ d = \sqrt{25 + 64} \][/tex]
[tex]\[ d = \sqrt{89} \][/tex]
[tex]\[ d \approx 9.434 \][/tex]

So, the distance between points [tex]\( A \)[/tex] and [tex]\( B \)[/tex] is approximately [tex]\( 9.434 \)[/tex].

### 2. Midpoint of the Line Segment
The midpoint [tex]\( M \)[/tex] of a line segment joining two points [tex]\((x_1, y_1)\)[/tex] and [tex]\((x_2, y_2)\)[/tex] is given by the formula:
[tex]\[ M = \left( \frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2} \right) \][/tex]

Plugging in the coordinates of points [tex]\( A \)[/tex] and [tex]\( B \)[/tex]:
[tex]\[ M = \left( \frac{-1 + 4}{2}, \frac{5 + (-3)}{2} \right) \][/tex]
[tex]\[ M = \left( \frac{3}{2}, \frac{2}{2} \right) \][/tex]
[tex]\[ M = \left( 1.5, 1.0 \right) \][/tex]

So, the midpoint of the line segment is [tex]\( (1.5, 1.0) \)[/tex].

### 3. Slope of the Line Segment
The slope [tex]\( m \)[/tex] of a line passing through two points [tex]\((x_1, y_1)\)[/tex] and [tex]\((x_2, y_2)\)[/tex] is calculated using the formula:
[tex]\[ m = \frac{y_2 - y_1}{x_2 - x_1} \][/tex]

Plugging in the coordinates of points [tex]\( A \)[/tex] and [tex]\( B \)[/tex]:
[tex]\[ m = \frac{-3 - 5}{4 - (-1)} \][/tex]
[tex]\[ m = \frac{-3 - 5}{4 + 1} \][/tex]
[tex]\[ m = \frac{-8}{5} \][/tex]
[tex]\[ m = -1.6 \][/tex]

So, the slope of the line segment joining points [tex]\( A \)[/tex] and [tex]\( B \)[/tex] is [tex]\( -1.6 \)[/tex].

### Summary:
- The distance between points [tex]\( A(-1, 5) \)[/tex] and [tex]\( B(4, -3) \)[/tex] is approximately [tex]\( 9.434 \)[/tex].
- The midpoint of the line segment joining these points is [tex]\( (1.5, 1.0) \)[/tex].
- The slope of the line segment is [tex]\( -1.6 \)[/tex].
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.