At Westonci.ca, we connect you with the best answers from a community of experienced and knowledgeable individuals. Discover reliable solutions to your questions from a wide network of experts on our comprehensive Q&A platform. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.

A cylindrical metal pipe has a diameter of 20 millimeters and a height of 21 millimeters. A cylindrical hole cut out of the center has a radius of 6 millimeters.

Which expressions represent the volume of metal needed, in cubic millimeters, to make the pipe? Select two options.

A. [tex]21 \pi(10)^2 - 21 \pi(6)^2[/tex]
B. [tex]\pi(20)^2(21) - \pi(6)^2[/tex]
C. [tex]2,100 \pi - 756 \pi[/tex]
D. [tex]7,644 \pi[/tex]
E. 1,344


Sagot :

To find the volume of metal needed to make the cylindrical pipe with a hole, we need to calculate the volumes of both the outer cylinder and the cylindrical hole, then subtract the volume of the hole from the volume of the pipe.

Given:
- The diameter of the cylindrical pipe is 20 mm, so its radius [tex]\( r_{\text{pipe}} \)[/tex] is 10 mm.
- The height [tex]\( h \)[/tex] of the cylindrical pipe is 21 mm.
- The radius of the cylindrical hole [tex]\( r_{\text{hole}} \)[/tex] is 6 mm.

First, let's determine the volume of the entire outer cylinder (the pipe without considering the hole):

[tex]\[ V_{\text{outer}} = \pi r_{\text{pipe}}^2 h \][/tex]
[tex]\[ V_{\text{outer}} = \pi (10)^2 (21) \][/tex]
[tex]\[ V_{\text{outer}} = 2,100 \pi \, \text{cubic millimeters} \][/tex]

Next, let's calculate the volume of the cylindrical hole:

[tex]\[ V_{\text{hole}} = \pi r_{\text{hole}}^2 h \][/tex]
[tex]\[ V_{\text{hole}} = \pi (6)^2 (21) \][/tex]
[tex]\[ V_{\text{hole}} = 756 \pi \, \text{cubic millimeters} \][/tex]

To find the volume of the metal needed, we subtract the volume of the hole from the volume of the outer cylinder:

[tex]\[ V_{\text{metal}} = V_{\text{outer}} - V_{\text{hole}} \][/tex]
[tex]\[ V_{\text{metal}} = 2,100 \pi - 756 \pi \][/tex]
[tex]\[ V_{\text{metal}} = 1,344 \pi \, \text{cubic millimeters} \][/tex]

Thus, the expressions that represent the volume of metal needed to make the pipe are:

[tex]\[ 21 \pi (10)^2 - 21 \pi (6)^2 \][/tex]
[tex]\[ 2,100 \pi - 756 \pi \][/tex]

Hence, the correct options are:
- [tex]\( 21 \pi (10)^2 - 21 \pi (6)^2 \)[/tex]
- [tex]\( 2,100 \pi - 756 \pi \)[/tex]
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.