At Westonci.ca, we connect you with the answers you need, thanks to our active and informed community. Get quick and reliable solutions to your questions from a community of experienced experts on our platform. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
Let's analyze the given inequalities and select the correct statement through step-by-step simplification and comparison.
Given inequalities:
1. [tex]\(x + 12 \leq 5 - y\)[/tex]
2. [tex]\(5 - y \leq 2(x - 3)\)[/tex]
First, let's derive the possible relationships from these inequalities.
### Inequality 1: [tex]\(x + 12 \leq 5 - y\)[/tex]
Rearrange this inequality to combine [tex]\(x\)[/tex] and [tex]\(y\)[/tex] on one side:
[tex]\[ x + y \leq -7 \][/tex]
### Inequality 2: [tex]\(5 - y \leq 2(x - 3)\)[/tex]
Rewrite the right side:
[tex]\[5 - y \leq 2x - 6\][/tex]
Next, rearrange to isolate [tex]\(y\)[/tex]:
[tex]\[ -y \leq 2x - 11 \][/tex]
[tex]\[ y \geq 11 - 2x \][/tex]
Thus, the inequalities we have are:
1. [tex]\(x + y \leq -7\)[/tex]
2. [tex]\(y \geq 11 - 2x\)[/tex]
Now, let's test each statement to find which one matches these inequalities:
### Option A: [tex]\(x + 12 \leq 2(5 - y)\)[/tex]
Simplify the right side:
[tex]\[ x + 12 \leq 10 - 2y \][/tex]
Rearrange to combine [tex]\(x\)[/tex] and [tex]\(y\)[/tex]:
[tex]\[ x + 2y \leq -2 \][/tex]
This result does not necessarily align with [tex]\(x + y \leq -7\)[/tex]. Therefore, option A is not correct.
### Option B: [tex]\(x + 12 \leq 2x - 3\)[/tex]
Rearrange to solve for [tex]\(x\)[/tex]:
[tex]\[ x + 12 \leq 2x - 3 \][/tex]
[tex]\[ 12 \leq x - 3 \][/tex]
[tex]\[ x \geq 15 \][/tex]
While this could be true, it doesn't necessarily depend on the inequalities [tex]\(x + y \leq -7\)[/tex] and [tex]\(y \geq 11 - 2x\)[/tex]. Therefore, option B is not correct.
### Option C: [tex]\(x + 12 \leq 2(x - 3)\)[/tex]
Expand and simplify the right side:
[tex]\[ x + 12 \leq 2x - 6 \][/tex]
[tex]\[ 18 \leq x \][/tex]
This is a reasonable conclusion from the given inequalities and can potentially align with [tex]\(x + y \leq -7\)[/tex]. This appears to be the most plausible statement.
### Option D: [tex]\(x + 12 \leq y - 5\)[/tex]
Rearrange to solve for [tex]\(y\)[/tex]:
[tex]\[ x + 17 \leq y \][/tex]
[tex]\[ y \geq x + 17 \][/tex]
This result does not necessarily match [tex]\(x + y \leq -7\)[/tex] or [tex]\(y \geq 11 - 2x\)[/tex]. Therefore, option D is not correct.
Considering all the analyzed statements, the most plausible and correct statement that aligns with the derived inequalities is:
[tex]\[ C. \, x + 12 \leq 2(x - 3) \][/tex]
So, the correct answer is:
[tex]\[ \boxed{C} \][/tex]
Given inequalities:
1. [tex]\(x + 12 \leq 5 - y\)[/tex]
2. [tex]\(5 - y \leq 2(x - 3)\)[/tex]
First, let's derive the possible relationships from these inequalities.
### Inequality 1: [tex]\(x + 12 \leq 5 - y\)[/tex]
Rearrange this inequality to combine [tex]\(x\)[/tex] and [tex]\(y\)[/tex] on one side:
[tex]\[ x + y \leq -7 \][/tex]
### Inequality 2: [tex]\(5 - y \leq 2(x - 3)\)[/tex]
Rewrite the right side:
[tex]\[5 - y \leq 2x - 6\][/tex]
Next, rearrange to isolate [tex]\(y\)[/tex]:
[tex]\[ -y \leq 2x - 11 \][/tex]
[tex]\[ y \geq 11 - 2x \][/tex]
Thus, the inequalities we have are:
1. [tex]\(x + y \leq -7\)[/tex]
2. [tex]\(y \geq 11 - 2x\)[/tex]
Now, let's test each statement to find which one matches these inequalities:
### Option A: [tex]\(x + 12 \leq 2(5 - y)\)[/tex]
Simplify the right side:
[tex]\[ x + 12 \leq 10 - 2y \][/tex]
Rearrange to combine [tex]\(x\)[/tex] and [tex]\(y\)[/tex]:
[tex]\[ x + 2y \leq -2 \][/tex]
This result does not necessarily align with [tex]\(x + y \leq -7\)[/tex]. Therefore, option A is not correct.
### Option B: [tex]\(x + 12 \leq 2x - 3\)[/tex]
Rearrange to solve for [tex]\(x\)[/tex]:
[tex]\[ x + 12 \leq 2x - 3 \][/tex]
[tex]\[ 12 \leq x - 3 \][/tex]
[tex]\[ x \geq 15 \][/tex]
While this could be true, it doesn't necessarily depend on the inequalities [tex]\(x + y \leq -7\)[/tex] and [tex]\(y \geq 11 - 2x\)[/tex]. Therefore, option B is not correct.
### Option C: [tex]\(x + 12 \leq 2(x - 3)\)[/tex]
Expand and simplify the right side:
[tex]\[ x + 12 \leq 2x - 6 \][/tex]
[tex]\[ 18 \leq x \][/tex]
This is a reasonable conclusion from the given inequalities and can potentially align with [tex]\(x + y \leq -7\)[/tex]. This appears to be the most plausible statement.
### Option D: [tex]\(x + 12 \leq y - 5\)[/tex]
Rearrange to solve for [tex]\(y\)[/tex]:
[tex]\[ x + 17 \leq y \][/tex]
[tex]\[ y \geq x + 17 \][/tex]
This result does not necessarily match [tex]\(x + y \leq -7\)[/tex] or [tex]\(y \geq 11 - 2x\)[/tex]. Therefore, option D is not correct.
Considering all the analyzed statements, the most plausible and correct statement that aligns with the derived inequalities is:
[tex]\[ C. \, x + 12 \leq 2(x - 3) \][/tex]
So, the correct answer is:
[tex]\[ \boxed{C} \][/tex]
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.