At Westonci.ca, we connect you with experts who provide detailed answers to your most pressing questions. Start exploring now! Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.

Simplify the following expression:

[tex]\[ \sqrt[3]{0.027} + \sqrt[3]{125} + \sqrt[3]{0.729} \][/tex]

A. 6.2


Sagot :

To solve the expression [tex]\(\sqrt[3]{0.027} + \sqrt[3]{125} + \sqrt[3]{0.729}\)[/tex], let's evaluate each cube root individually and then add the terms together.

1. Evaluate [tex]\(\sqrt[3]{0.027}\)[/tex]:
The cube root of [tex]\(0.027\)[/tex] is [tex]\(0.3\)[/tex]. This is because:
[tex]\[ 0.3 \times 0.3 \times 0.3 = 0.027 \][/tex]

2. Evaluate [tex]\(\sqrt[3]{125}\)[/tex]:
The cube root of [tex]\(125\)[/tex] is [tex]\(5.0\)[/tex]. This is because:
[tex]\[ 5 \times 5 \times 5 = 125 \][/tex]

3. Evaluate [tex]\(\sqrt[3]{0.729}\)[/tex]:
The cube root of [tex]\(0.729\)[/tex] is [tex]\(0.9\)[/tex]. This is because:
[tex]\[ 0.9 \times 0.9 \times 0.9 = 0.729 \][/tex]

Now, let's add these results together:
[tex]\[ 0.3 + 5.0 + 0.9 = 6.2 \][/tex]

So, the value of [tex]\(\sqrt[3]{0.027} + \sqrt[3]{125} + \sqrt[3]{0.729}\)[/tex] is [tex]\(6.2\)[/tex].

Thus, the correct answer is [tex]\( \boxed{6.2} \)[/tex].