Discover a wealth of knowledge at Westonci.ca, where experts provide answers to your most pressing questions. Get accurate and detailed answers to your questions from a dedicated community of experts on our Q&A platform. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
Let's determine the number of diagonals in each of these polygons one by one.
### 1) Convex Quadrilateral
A quadrilateral has 4 sides (n = 4). To find the number of diagonals in a polygon, we can use the formula:
[tex]\[ \text{Number of diagonals} = \frac{n(n - 3)}{2} \][/tex]
For a convex quadrilateral:
[tex]\[ n = 4 \][/tex]
[tex]\[ \text{Number of diagonals} = \frac{4(4 - 3)}{2} = \frac{4 \times 1}{2} = \frac{4}{2} = 2 \][/tex]
So, a convex quadrilateral has 2 diagonals.
### 2) Regular Hexagon
A hexagon has 6 sides (n = 6). Using the same formula:
[tex]\[ \text{Number of diagonals} = \frac{n(n - 3)}{2} \][/tex]
For a regular hexagon:
[tex]\[ n = 6 \][/tex]
[tex]\[ \text{Number of diagonals} = \frac{6(6 - 3)}{2} = \frac{6 \times 3}{2} = \frac{18}{2} = 9 \][/tex]
So, a regular hexagon has 9 diagonals.
### 3) Triangle
A triangle has 3 sides (n = 3). Using the same formula:
[tex]\[ \text{Number of diagonals} = \frac{n(n - 3)}{2} \][/tex]
For a triangle:
[tex]\[ n = 3 \][/tex]
[tex]\[ \text{Number of diagonals} = \frac{3(3 - 3)}{2} = \frac{3 \times 0}{2} = \frac{0}{2} = 0 \][/tex]
So, a triangle has 0 diagonals.
### Summary
- A convex quadrilateral has 2 diagonals.
- A regular hexagon has 9 diagonals.
- A triangle has 0 diagonals.
### 1) Convex Quadrilateral
A quadrilateral has 4 sides (n = 4). To find the number of diagonals in a polygon, we can use the formula:
[tex]\[ \text{Number of diagonals} = \frac{n(n - 3)}{2} \][/tex]
For a convex quadrilateral:
[tex]\[ n = 4 \][/tex]
[tex]\[ \text{Number of diagonals} = \frac{4(4 - 3)}{2} = \frac{4 \times 1}{2} = \frac{4}{2} = 2 \][/tex]
So, a convex quadrilateral has 2 diagonals.
### 2) Regular Hexagon
A hexagon has 6 sides (n = 6). Using the same formula:
[tex]\[ \text{Number of diagonals} = \frac{n(n - 3)}{2} \][/tex]
For a regular hexagon:
[tex]\[ n = 6 \][/tex]
[tex]\[ \text{Number of diagonals} = \frac{6(6 - 3)}{2} = \frac{6 \times 3}{2} = \frac{18}{2} = 9 \][/tex]
So, a regular hexagon has 9 diagonals.
### 3) Triangle
A triangle has 3 sides (n = 3). Using the same formula:
[tex]\[ \text{Number of diagonals} = \frac{n(n - 3)}{2} \][/tex]
For a triangle:
[tex]\[ n = 3 \][/tex]
[tex]\[ \text{Number of diagonals} = \frac{3(3 - 3)}{2} = \frac{3 \times 0}{2} = \frac{0}{2} = 0 \][/tex]
So, a triangle has 0 diagonals.
### Summary
- A convex quadrilateral has 2 diagonals.
- A regular hexagon has 9 diagonals.
- A triangle has 0 diagonals.
Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.