Westonci.ca is the premier destination for reliable answers to your questions, brought to you by a community of experts. Our Q&A platform provides quick and trustworthy answers to your questions from experienced professionals in different areas of expertise. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
The absolute value of any complex number [tex]\(a + bi\)[/tex] is the Euclidean distance from [tex]\((a, b)\)[/tex] to [tex]\((0, 0)\)[/tex] in the complex plane.
To understand this, let's break it down:
1. Complex Number Representation: A complex number is often written as [tex]\(a + bi\)[/tex], where [tex]\(a\)[/tex] is the real part and [tex]\(b\)[/tex] is the imaginary part.
2. Magnitude or Absolute Value: The magnitude (or absolute value) of a complex number [tex]\(a + bi\)[/tex] is denoted as [tex]\(|a + bi|\)[/tex]. This value represents the distance of the point [tex]\((a, b)\)[/tex] in the complex plane from the origin [tex]\((0, 0)\)[/tex].
3. Euclidean Distance Formula: This distance can be calculated using the Euclidean distance formula:
[tex]\[ \text{Distance} = \sqrt{(a - 0)^2 + (b - 0)^2} = \sqrt{a^2 + b^2} \][/tex]
4. Conclusion: Thus, the absolute value of the complex number [tex]\(a + bi\)[/tex] is the Euclidean distance from the point [tex]\((a, b)\)[/tex] to the origin [tex]\((0, 0)\)[/tex] in the complex plane.
Putting it all together, the completed definition is:
The absolute value of any complex number [tex]\(a + bi\)[/tex] is the Euclidean distance from [tex]\((a, b)\)[/tex] to [tex]\((0, 0)\)[/tex] in the complex plane.
To understand this, let's break it down:
1. Complex Number Representation: A complex number is often written as [tex]\(a + bi\)[/tex], where [tex]\(a\)[/tex] is the real part and [tex]\(b\)[/tex] is the imaginary part.
2. Magnitude or Absolute Value: The magnitude (or absolute value) of a complex number [tex]\(a + bi\)[/tex] is denoted as [tex]\(|a + bi|\)[/tex]. This value represents the distance of the point [tex]\((a, b)\)[/tex] in the complex plane from the origin [tex]\((0, 0)\)[/tex].
3. Euclidean Distance Formula: This distance can be calculated using the Euclidean distance formula:
[tex]\[ \text{Distance} = \sqrt{(a - 0)^2 + (b - 0)^2} = \sqrt{a^2 + b^2} \][/tex]
4. Conclusion: Thus, the absolute value of the complex number [tex]\(a + bi\)[/tex] is the Euclidean distance from the point [tex]\((a, b)\)[/tex] to the origin [tex]\((0, 0)\)[/tex] in the complex plane.
Putting it all together, the completed definition is:
The absolute value of any complex number [tex]\(a + bi\)[/tex] is the Euclidean distance from [tex]\((a, b)\)[/tex] to [tex]\((0, 0)\)[/tex] in the complex plane.
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.