Discover the answers to your questions at Westonci.ca, where experts share their knowledge and insights with you. Get immediate and reliable solutions to your questions from a knowledgeable community of professionals on our platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
Alright, let's go through the process of subtracting the polynomial [tex]\(6x^3 - 2x + 3\)[/tex] from [tex]\(-3x^3 + 5x^2 + 4x - 7\)[/tex]. We will identify and clarify each step Lorne used and arrive at the correct answer.
### Problem Statement:
We need to subtract the polynomial [tex]\(6x^3 - 2x + 3\)[/tex] from [tex]\(-3x^3 + 5x^2 + 4x - 7\)[/tex].
### Step-by-Step Solution:
1. Rewrite each polynomial:
- The first polynomial is [tex]\(-3x^3 + 5x^2 + 4x - 7\)[/tex].
- The second polynomial is [tex]\(6x^3 - 2x + 3\)[/tex].
2. Express the subtraction operation:
We need to perform [tex]\((-3x^3 + 5x^2 + 4x - 7) - (6x^3 - 2x + 3)\)[/tex].
3. Distribute the negative sign:
Subtracting a polynomial is the same as adding its opposite (i.e., distributing the negative sign to each term inside the parentheses):
[tex]\[ -3x^3 + 5x^2 + 4x - 7 - 6x^3 + 2x - 3 \][/tex]
4. Combine like terms:
Group the terms with the same degree together and combine them.
[tex]\[ \begin{array}{rl} = & (-3x^3 - 6x^3) + 5x^2 + (4x + 2x) + (-7 - 3) \\ = & -9x^3 + 5x^2 + 6x - 10 \end{array} \][/tex]
5. Final simplified form:
The result of the subtraction is:
[tex]\[ -9x^3 + 5x^2 + 6x - 10 \][/tex]
### Filling the drop-down menu:
[tex]\[ \begin{array}{l} \left[\text{Step 1: Rewrite each polynomial}\right]\\ \left[\text{Step 2: Express the subtraction operation}\right] \\ \left[\text{Step 3: Distribute the negative sign}\right] \\ \left[\text{Step 4: Combine like terms}\right] \\ \left[\text{Final Step: Simplify to get the final result}\right] \\ \end{array} \][/tex]
By following these steps, we arrive at the correct solution [tex]\(-9x^3 + 5x^2 + 6x - 10\)[/tex].
### Problem Statement:
We need to subtract the polynomial [tex]\(6x^3 - 2x + 3\)[/tex] from [tex]\(-3x^3 + 5x^2 + 4x - 7\)[/tex].
### Step-by-Step Solution:
1. Rewrite each polynomial:
- The first polynomial is [tex]\(-3x^3 + 5x^2 + 4x - 7\)[/tex].
- The second polynomial is [tex]\(6x^3 - 2x + 3\)[/tex].
2. Express the subtraction operation:
We need to perform [tex]\((-3x^3 + 5x^2 + 4x - 7) - (6x^3 - 2x + 3)\)[/tex].
3. Distribute the negative sign:
Subtracting a polynomial is the same as adding its opposite (i.e., distributing the negative sign to each term inside the parentheses):
[tex]\[ -3x^3 + 5x^2 + 4x - 7 - 6x^3 + 2x - 3 \][/tex]
4. Combine like terms:
Group the terms with the same degree together and combine them.
[tex]\[ \begin{array}{rl} = & (-3x^3 - 6x^3) + 5x^2 + (4x + 2x) + (-7 - 3) \\ = & -9x^3 + 5x^2 + 6x - 10 \end{array} \][/tex]
5. Final simplified form:
The result of the subtraction is:
[tex]\[ -9x^3 + 5x^2 + 6x - 10 \][/tex]
### Filling the drop-down menu:
[tex]\[ \begin{array}{l} \left[\text{Step 1: Rewrite each polynomial}\right]\\ \left[\text{Step 2: Express the subtraction operation}\right] \\ \left[\text{Step 3: Distribute the negative sign}\right] \\ \left[\text{Step 4: Combine like terms}\right] \\ \left[\text{Final Step: Simplify to get the final result}\right] \\ \end{array} \][/tex]
By following these steps, we arrive at the correct solution [tex]\(-9x^3 + 5x^2 + 6x - 10\)[/tex].
We appreciate your time. Please come back anytime for the latest information and answers to your questions. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.