Welcome to Westonci.ca, your one-stop destination for finding answers to all your questions. Join our expert community now! Discover comprehensive solutions to your questions from a wide network of experts on our user-friendly platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To solve the inequality [tex]\( |13x| > -5 \)[/tex], let's analyze the given absolute value expression step-by-step.
1. Understanding the Absolute Value Function: The absolute value function, written as [tex]\( |13x| \)[/tex], always gives a non-negative result. By definition:
[tex]\[ |13x| \geq 0 \][/tex]
This means that the smallest value [tex]\( |13x| \)[/tex] can take is [tex]\( 0 \)[/tex].
2. Comparing with [tex]\(-5\)[/tex]: Notice that [tex]\(-5\)[/tex] is a negative number. Since the absolute value of any real number is always non-negative, it is always greater than [tex]\(-5\)[/tex]:
[tex]\[ |13x| \geq 0 > -5 \][/tex]
3. Implications for [tex]\( x \)[/tex]: Since [tex]\( |13x| \)[/tex] is always non-negative and always greater than [tex]\(-5\)[/tex], this inequality is satisfied for all values of [tex]\( x \)[/tex]. No matter what [tex]\( x \)[/tex] you substitute into the expression [tex]\( 13x \)[/tex], the absolute value will always produce a value that is greater than [tex]\(-5\)[/tex].
Therefore, the correct answer is:
B. All values are solutions
1. Understanding the Absolute Value Function: The absolute value function, written as [tex]\( |13x| \)[/tex], always gives a non-negative result. By definition:
[tex]\[ |13x| \geq 0 \][/tex]
This means that the smallest value [tex]\( |13x| \)[/tex] can take is [tex]\( 0 \)[/tex].
2. Comparing with [tex]\(-5\)[/tex]: Notice that [tex]\(-5\)[/tex] is a negative number. Since the absolute value of any real number is always non-negative, it is always greater than [tex]\(-5\)[/tex]:
[tex]\[ |13x| \geq 0 > -5 \][/tex]
3. Implications for [tex]\( x \)[/tex]: Since [tex]\( |13x| \)[/tex] is always non-negative and always greater than [tex]\(-5\)[/tex], this inequality is satisfied for all values of [tex]\( x \)[/tex]. No matter what [tex]\( x \)[/tex] you substitute into the expression [tex]\( 13x \)[/tex], the absolute value will always produce a value that is greater than [tex]\(-5\)[/tex].
Therefore, the correct answer is:
B. All values are solutions
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.