Welcome to Westonci.ca, the ultimate question and answer platform. Get expert answers to your questions quickly and accurately. Discover solutions to your questions from experienced professionals across multiple fields on our comprehensive Q&A platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.

Prove that
[tex] \sum_{i=1}^n \left( x_i - \mu \right)^2 = \sum_{i=1}^n \left( x_i^2 \right) - n \mu^2. [/tex]


Sagot :

To prove that [tex]\(\sum_{i=1}^n \left(x_i - \mu\right)^2 = \sum_{i=1}^n x_i^2 - n \mu^2\)[/tex], we will start by expanding the left side and then simplifying it to match the right side.

### Step 1: Define the mean

The mean, [tex]\(\mu\)[/tex], of the [tex]\(n\)[/tex] elements [tex]\(x_1, x_2, \ldots, x_n\)[/tex] is:

[tex]\[ \mu = \frac{1}{n} \sum_{i=1}^n x_i \][/tex]

### Step 2: Expand the left side

Let's start by expanding the left-hand side of the equation:

[tex]\[ \sum_{i=1}^n (x_i - \mu)^2 \][/tex]

Expanding this, we get:

[tex]\[ \sum_{i=1}^n (x_i - \mu)^2 = \sum_{i=1}^n (x_i^2 - 2x_i \mu + \mu^2) \][/tex]

### Step 3: Distribute the summation

We can distribute the summation over the terms in the expanded expression:

[tex]\[ \sum_{i=1}^n x_i^2 - \sum_{i=1}^n 2x_i \mu + \sum_{i=1}^n \mu^2 \][/tex]

### Step 4: Simplify each term

Let's simplify each term step-by-step:

1. First term:
[tex]\[ \sum_{i=1}^n x_i^2 \][/tex]
This term remains as is.

2. Second term:
[tex]\[ \sum_{i=1}^n 2x_i \mu = 2\mu \sum_{i=1}^n x_i \][/tex]
Since [tex]\(\mu\)[/tex] is a constant with respect to the summation, it can be taken outside the summation sign.

3. Third term:
[tex]\[ \sum_{i=1}^n \mu^2 \][/tex]
Since [tex]\(\mu^2\)[/tex] is also a constant with respect to the summation:
[tex]\[ \sum_{i=1}^n \mu^2 = n \mu^2 \][/tex]

### Step 5: Combine the simplified terms

Now, combining the simplified terms, we have:

[tex]\[ \sum_{i=1}^n x_i^2 - 2\mu \sum_{i=1}^n x_i + n \mu^2 \][/tex]

### Step 6: Substitute the expression for the mean

Recall that [tex]\(\mu = \frac{1}{n} \sum_{i=1}^n x_i\)[/tex]. Therefore:

[tex]\[ 2\mu \sum_{i=1}^n x_i = 2 \left(\frac{1}{n} \sum_{i=1}^n x_i\right) \sum_{i=1}^n x_i = 2 \frac{1}{n} \left(\sum_{i=1}^n x_i\right)^2 = \frac{2}{n} \left(\sum_{i=1}^n x_i\right) \sum_{i=1}^n x_i = 2 \sum_{i=1}^n x_i \][/tex]

### Step 7: Final expression

Putting it all together:

[tex]\[ \sum_{i=1}^n (x_i - \mu)^2 = \sum_{i=1}^n x_i^2 - 2\mu \sum_{i=1}^n x_i + n \mu^2 = \sum_{i=1}^n x_i^2 - 2 \sum_{i=1}^n x_i \mu + n \mu^2 \][/tex]

Finally, notice that [tex]\(\sum_{i=1}^n x_i \mu = \sum_{i=1}^n \mu x_i = n \mu \mu = n\mu^2\)[/tex] as [tex]\(\mu = \frac{1}{n} \sum_{i=1}^n x_i\)[/tex]:

[tex]\[ = \sum_{i=1}^n x_i^2 - 2n \mu^2 + n \mu^2 = \sum_{i=1}^n x_i^2 - n \mu^2 \][/tex]

Hence, we have:

[tex]\[ \sum_{i=1}^n (x_i - \mu)^2 = \sum_{i=1}^n x_i^2 - n \mu^2 \][/tex]

This completes the proof.