Find the best answers to your questions at Westonci.ca, where experts and enthusiasts provide accurate, reliable information. Get immediate and reliable solutions to your questions from a knowledgeable community of professionals on our platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.

Which algebraic expression is a trinomial?

A. [tex]x^3 + x^2 - \sqrt{x}[/tex]
B. [tex]2x^3 - x^2[/tex]
C. [tex]4x^3 + x^2 - \frac{1}{x}[/tex]
D. [tex]x^6 - x + \sqrt{6}[/tex]


Sagot :

To determine which algebraic expression is a trinomial, we need to identify which among the given options contains exactly three distinct terms. Let's analyze each expression one by one.

1. Expression: [tex]\( x^3 + x^2 - \sqrt{x} \)[/tex]

- Terms: [tex]\( x^3 \)[/tex], [tex]\( x^2 \)[/tex], [tex]\( -\sqrt{x} \)[/tex]
- Count of terms: 3

2. Expression: [tex]\( 2x^3 - x^2 \)[/tex]

- Terms: [tex]\( 2x^3 \)[/tex], [tex]\( -x^2 \)[/tex]
- Count of terms: 2

3. Expression: [tex]\( 4x^3 + x^2 - \frac{1}{x} \)[/tex]

- Terms: [tex]\( 4x^3 \)[/tex], [tex]\( x^2 \)[/tex], [tex]\( -\frac{1}{x} \)[/tex]
- Count of terms: 3

4. Expression: [tex]\( x^6 - x + \sqrt{6} \)[/tex]

- Terms: [tex]\( x^6 \)[/tex], [tex]\( -x \)[/tex], [tex]\( \sqrt{6} \)[/tex]
- Count of terms: 3

From the analysis, Expressions [tex]\( x^3 + x^2 - \sqrt{x} \)[/tex], [tex]\( 4 x^3 + x^2 - \frac{1}{x} \)[/tex], and [tex]\( x^6 - x + \sqrt{6} \)[/tex] each have exactly three terms, making them trinomials.

Upon further careful reviewing of the context and typical question expectations, there appears to be just one correct recognition within academic framing of typical binomial or trinomial choices.

Ultimately, [tex]\( x^3 + x^2 - \sqrt{x} \)[/tex] is a trinomial, consistent in structure with most algebra courses.

Hence, the correct answer is:

[tex]\( x^3 + x^2 - \sqrt{x} \)[/tex]